LiPO-Battery

Lithium polymer battery is a kind of lithium-ion battery, but it has obvious advantages over liquid lithium battery (with high energy density, more compact, ultra-thin, lightweight, and high safety and size), is a novel battery. Below we detail the advantages of lithium polymer batteries.

1. Good safety performance

Lithium polymer batteries are structured in soft aluminum-plastic packaging, which is different from the metal case of liquid batteries. Once a safety hazard occurs, the liquid batteries are liable to explode, and the lithium polymer batteries can only be inflated.

2. Can be made thinner

Ordinary liquid lithium batteries adopt the method of customizing the casing first and then plugging the positive and negative electrodes. The thickness is less than 3.6mm. There is a technical limitation. The lithium-polymer battery does not have this problem. The thickness can be less than 1mm( ultra-thin battery can be 0.4mm in thickness), which meets the current mobile phone requirements.

3. Lightweight

Batteries with polymer weights do not require a metal case as protective packaging. Lithium polymer batteries are 40% lighter than steel-case lithium batteries of the same capacity and 20% lighter than aluminum-case batteries.

Li-polumer-battery

4. Large capacity

Polymer batteries have a capacity 10 ~ 15% higher than steel-case batteries of the same size and specifications, and 5 ~ 10% higher than aluminum-case batteries. They have become the first choice for color screen mobile phones and MMS mobile phones. The newest color screen and MMS mobile phones currently on the market also Polymer batteries.

5. Small internal resistance

The internal resistance of lithium polymer batteries is smaller than that of ordinary liquid batteries. At present, the internal resistance of domestic polymer batteries can even be less than 35mΩ, which greatly reduces the self-power consumption of the battery and extends the standby time of the mobile phone. It is completely possible. Reached the level of international standards. This kind of polymer lithium battery that supports large discharge current is an ideal choice for remote control model, and it has become the most promising product to replace the nickel-metal hydride battery.

6. The shape can be customized

Lithium polymer batteries can increase or decrease the cell thickness according to customer needs, develop new cell models, are cheap, have short mold opening cycles, and some can even be tailored to the shape of the cell phone to fully utilize the battery case space and enhance the battery capacity.

7.Good discharge characteristics

Lithium polymer batteries use colloidal electrolytes, which are subdivided into liquid electrolytes. Colloidal electrolytes have stable discharge characteristics and a higher discharge platform.

LiPO-Battery

8.Simple protection plate design

Because of the use of polymer materials, the battery core does not ignite, does not explode, and the battery core itself has sufficient safety. Therefore, the protection circuit design oflithium polymer batteries can consider omitting PTC and fuses, thereby saving battery costs.

HIMAX specializes in custom, semi-custom, and off-the-shelf lithium polymer batteries. With over 15 years of customer service experience, HIMAX has developed a very complete service system, specifically tailored for our customers, which helps us in better understanding your needs in the first step of our communication, in a highly time-efficient way.

 

If you are interested in our lithium polymer batteries, please don’t hesitate to contact us at any time!

Email: sales@himaxelectronics.com

Himax Website: https://himaxelectronics.com/

Medical-batteries

There are three types of medical batteries commonly seen in hospitals and clinical settings, and it is important to be able to distinguish them in order to know which custom battery adapter is the right fit when analyzing battery life:

Medical-batteries

Removable batteries: Nurses charge these packs on charging stations and get periodic analysis in the service center. Typical uses are defibrillators, infusion pumps, diabetic monitors, and surgical tools.

Built-in batteries: Increasingly, batteries are internal to the devices and are charged while the device is connected to the grid. Battery maintenance is done by the bio-med technician by opening the instrument. Typical uses are modern defibrillators, patient monitors, ventilators, surgical tools.

Standby batteries: These batteries are built into instruments on wheels and service as backup during transit and at bed-side. Many of these batteries are still lead acid. The depth of discharge is small if the nurse remembers to connect the AC cord. Typical uses are COW (Computer-on-wheels) blood transfusion units, as well as portable x-ray.

Dave Marlow, a certified biomedical equipment technician at the University of Michigan Health System, categorizes the battery as a “mixed bag of challenges”, with different medical facilities having different assortments of capabilities, battery technologies, manufacturing approaches, user training and experience differences. This is due to the fact that medical batteries must be designed, manufactured and labelled specifically for their use with specific medical devices (source) making the list of batteries designed for each machine essentially endless.

High-Voltage-LiPo-Batteries

High-Voltage-LiPo-Batteries

Drones are being used more and more widely in all our lives, so the batteries that power these devices are increasingly advancing and being pushed to their limits. One of the biggest challenges to these batteries is endurance; more and more users need the power to last longer.

One such example is with an agricultural drone. Let’s say that the drone carries 10kg of pesticide with two ordinary Lithium Polymer (LiPo) batteries that have a capacity of 16000mAh in 6S (22.2V). This drone will only be able to last about ten minutes with these batteries, which farmers generally find to be too short. However, the use of high-voltage batteries with the same capacity and C rating can increase this flight time by 15-25%, which will increase the efficiency and operations.

We will explore why high-voltage batteries can improve flight duration and also look at the advantages of such batteries.

1. Weight

Without an increase in weight, high-voltage batteries provide better performance.  This is key for UAVs since each drone has a specific payload that it cannot go over.

2. Higher Voltage

If we compare ordinary LiPo batteries to that of those with high voltage, we see a subtle change in voltage. Through this little voltage increase, users are able to get increased performance in their products.

Ordinary LiPo Batteries

The nominal voltage for a single LiPo cell is 3.7V. A 6S battery pack has a nominal voltage of 22.2V, and a 12S has 44.4V.

A single LiPo cell that is fully charged has 4.2V while a 6S has 25.2V and a 12S 50.4V.

High-Voltage LiPo Batteries

The nominal voltage of a single high-voltage LiPo cell is 3.8V, a 6S pack has 22.8V, and a 12S has 45.6V.

A single LiPo cell that is fully charged has 4.35V while a 6S has 26.1V and a 12S 52.2V.

3. Better Cycle Life

Battery-cycle-life

In the chart above, we can follow the discharge rate of several batteries. The high-voltage 4.4V batteries (shown in green) demonstrate a higher discharge rate and discharge capacity.

Battery-cycle-life-1

The above chart shows that, under the same discharge currents and cycles, the 4.4V (in blue) has a longer cycle life than the other batteries at 4.35V or 4.2V.

4. Increased Efficiency

Similar to the example offered at the beginning, we put two drones together for a simple test.  Both drones carried 15kg of water with two batteries of 25C and 22000mAh in 6S.

The drone with the non-high-voltage batteries (22.2V) lasted 17 minutes and 50 seconds.

The drone with the high-voltage batteries (22.8V) lasted longer for 22 minutes and 10 seconds, lasting 4 minutes longer than the ordinary batteries.

Conclusion

According to the above data, the advantages of high-voltage UAV batteries are obvious.

We are able to custom, high-voltage cells and offer a one-stop service for your battery designs and solutions.

Johns-Hopkins-new-type-of-li-ion-battery-will-not-catch-fire

Lithium-ion batteries are required for smartphones, laptops, and electric cars. Although lithium-ion batteries have many advantages, they still have a fire hazard when they overheat. According to foreign media reports, The Johns Hopkins University is developing a new type of lithium-ion battery that will not catch fire and has made breakthroughs.

The researchers said that the new lithium-ion battery is very thin and flexible, unlike the current lithium-ion battery. Today’s lithium-ion batteries must be encapsulated in a rigid cylindrical or polygonal battery cover to isolate unstable and explosive components. The battery developed by Johns Hopkins University is very strong, can be immersed in water, cut, and even withstand ballistic impact.

Johns-Hopkins-new-type-of-li-ion-battery-will-not-catch-fire

ONE TOUGH POWER SOURCE

The popular myth that a spider is never more than a few feet away is arguably more true of lithium-ion batteries than of arachnids. Powering everything from smartphones and laptops to electronic cigarettes, lithium-ion batteries beat out alternative sources of power because of their top-notch energy density and long life cycle, meaning they can be recharged over and over again before breaking down. Yet for all these advantages, lithium-ion batteries come with a major concern: They can catastrophically ignite when they overheat.

 

At the Johns Hopkins Applied Physics Laboratory, a new type of lithium-ion battery that cannot catch fire is in the works. A team of researchers led by Konstantinos Gerasopoulos, a senior research scientist at the lab, recently made breakthroughs in their development efforts. The new battery is thin and flexible, unlike today’s lithium-ion batteries that must be packaged in rigid cylindrical or polygonal cases to wall off their volatile contents. The APL battery is also tough, able to withstand submersion in water, cutting, and even ballistic impacts.

 

“We wanted to create a battery that is as thin and powerful as the electronics it’s intended to power,” Gerasopoulos says. “And to do that, we needed to transform the battery’s safety.”

 

  • Swap out for safety

In batteries, a liquid electrolyte conveys electrons between two electrodes, providing an electric current that powers your device. Standard lithium-ion batteries contain an electrolyte with an organic solvent that, while efficient, happens to be flammable. Gerasopoulos and colleagues have developed a new class of electrolyte that uses lithium salts dissolved in water as an inflammable solvent. A polymer matrix—basically, a kind of plastic sponge—soaks up the water, and the ultimate result is a bendable, soft, contact lens–like electrolyte.

  • The positive with the negative

Usually, lithium-ion battery electrodes are foil-like and, when bent too much, can crinkle and be damaged. APL’s battery electrodes are instead crafted with Kapton, a flexible film often used to insulate a spacecraft from extreme temperatures. As an added bonus, Kapton is a readily available, off-the-shelf material, reducing the battery’s cost and complexity to manufacture.

  • More power for longer

The current iteration of the new electrolyte sustains 4.1 volts—not quite as much as conventional lithium-ion batteries, but it’s inching closer. The APL team also wants to improve the battery’s life cycle from around a hundred charges to more like a thousand, matching today’s typical battery performances. Continued tweaking of the polymer’s chemistry for better electrochemical stability should deliver on these two objectives.

 

The article is forwarded from Johns Hopkins Magazine by Adam Hadhazy

Original URL: HERE

warehouse

warehouse

What is the best way to store an 18650 battery?

In this blog post, rather than do my own testing – I will rely on the specification sheets provided by Panasonic, Samsung, and LG. We’ll look at the storing section of these spec sheets, and break down the important factors and what they mean. Scroll to the end, the overview, to get to the conclusions of the post quickly.

Panasonic-18650-B

18650B

 

What does it mean?

There are three rows, each with different storage conditions. Note the second and third column are locked in place by the fourth. Each row represents recovering 80% of the battery’s usable capacity. Since the rated capacity of the NCR18650B is 3200 mAh, this 80% represents 2560 mAh after storage.

  1. If you are storing an 18650 battery for less than a month, you may store it in an environment as hot as 50°Cand be able to recover 2560 mAh.
  2. If you are storing an 18650 battery for less than 3 months, you may store it in an environment as hot as 40°Cand be able to recover 2560 mAh.
  3. If you are storing an 18650 battery for less than 1 year, you may store it in an environment as hot as 20°Cand be able to recover 2560 mAh.

In the last case, storing for one year with a 20% drop in capacity translates to 1.6% loss of capacity per month, or 53 mAh.

In the first case (storing at high temperatures for less than one month) translates to a loss of 21 mAh per day.

Storage temperature and conditions

We can see from the above 3 items, it is temperature as the main factor determining the resulting capacity after storage, and ultimately how long you can store your battery for.

18650 batteries can be stored at very low temperatures, but high temperatures degrade them quickly. Rule of thumb: They must always be stored at less than 60°C.

Lithium-ion batteries, in most cases must maintain a voltage above 2.5V before they start to break down and decompose. Therefore, for long-term storage it is best to “top-up” your batteries when their voltage drops too low.

  • Note 1:When receiving new cells, the manufacture will ship them at a 40% charge. However, it is very likely this will soon be set at 30% as airline safety regulations demand safer transport, and less charge is safer.
  • Note 2:In these tests, Panasonic fully charged the batteries at 25°C, up to 4.2V. However, for long-term storage it is recommended not to store at a full charge, but to seek a lower voltage (more on that ahead).

Finally, the environment should be dry, or low humidity – without dust, or a corrosive gas atmosphere. Optimizing your cell’s environment becomes more important the longer they are kept stored. Anything above 3 months may start to be considered long-term.

Samsung-25R

Samsung 25R

 

Differences between the Samsung 25R and Panasonic 18650B

The Samsung 25R performs better during storage on all fronts. Across the board, the 25R can store at ten degrees lower than the 18650B. As well, the difference in higher temperatures, in favor of the 25R from 1 month, 3 months, to 1.5 years, is +10°C, +5°C, +5°C.

Most importantly, this 18650 battery can be stored a full six months longer and retain 90% capacity (10% more than the NCR18650B).

The optimal storing voltage

The 25R spec sheet notes that for long-term storage, the voltage should, rather than be fully charged, set at a lower, more optimal voltage. This is to prevent the degrading of performance characteristics. In the case of the 25R, the recommended voltage is 50 ± 5% of its standard (4.2V) charged state.

  • This works out to be a range between 3.64V and 3.71V

Other batteries have different ranges, but most are close to ~50% voltage which is usually around ~3.7V.

Storing 18650 batteries

Overview

It is good to reference at least three batteries, and off the blog I have checked more. All 18650 batteries researched need a storage range of between -20 ~ +50°C (-4°F ~ + 122°F) or they will degrade, so this is a good rule of thumb to use.

Also keep in mind the maximum temperature for storage should never exceed +60°C (140°F). It is better to store in a cold environment, than a hot one.

Optimally, a good storage temperature should be closer to 25°C (77°F) or a somewhat lower. The closer you are to an optimal temperature, the longer you will be able to store your batteries without “topping up” and recharging them.

For the most part, the maximum time for 18650 storage before recharge is about one year.

If you are intending long term 18650 storage, a storage charge closer to 50% of usable capacity (~3.7V) rather than 100% (4.2V) will prevent faster battery degradation.

Frequently asked questions and notes

What happens if I don’t store my 18650 batteries correctly?

It will cause a loss of performance and your cells may leak and/or rust, and ultimately become unusable. Cells becoming unstable enough and exploding in storage is a possibility. In the worst case – explosion – it is not clear why this sometimes happens but it could be due to static, pressure, temperature, or packing incorrectly (allowing metal objects or batteries to touch).

Notes
  • For very short-term storage, don’t store the battery in a pocket or a bag together with metallic objects such as keys, necklaces, hairpins, coins, or screws when you are travelling.
  • Remove the battery from its application before storing it. For example, from your e-cigarette, flashlight, or electric bike. You should optimally store the batteries in a fire-proof container, with optimal environmental conditions.
  • Do not store 18650 batteries in or near objects that will produce a static electric charge.
  • Quick pressure changes can also cause 18650 batteries to malfunction

 

lithium

Lithium is thought to be one of the first elements made after the Big Bang. An enormous amount of Hydrogen, Helium, and Lithium (the first three elements on the periodic table) were synthesized within the first thee minutes of the universe’s existence.

This process is called Big Bang nucleosynthesis. Essentially, all elements heavier than lithium were made much later by stellar nucleosynthesis (like what is happening in the Sun).

Li-ion

Lithium is special for other reasons too

Lithium facts on history

Lithium is from Greek lithos meaning “stone”

Was used in the first man-made nuclear reaction in 1932

Lithium interesting facts

Soft enough to be cut by scissors

The lightest metal, and least dense solid element, so it can easily float on water

Does not occur freely in nature (it’s too unstable), but is found in nearly all lava, mineral water, and sea water

Pure lithium corrodes immediately when exposed to the moisture in air

Lithium in biology

18650 3.7V

All organisms have a little lithium in their bodies, but it does not seem to serve a biological purpose

Lithium in pills is used to treat bipolar disorder

Lithium in economics

80% of the world’s lithium is in salt flats between Argentina, Chile, and Bolivia

 

Let’s look at some pictures

lithium-chemical

Here are some pieces of raw lithium. Notice the lines and grooves cut into the soft metal by the tool they used to cut it. Also note what appears to be a bubble. It is most likely Hydrogen, as this is what is released when lithium reacts to water (or water from moisture in the air).

Lithium cell

This is a photograph taken in Bolivia, in what is called ‘Salar de Uyuni’ – the biggest salt lake in the world. The amazing scenery holds a secret – a huge reserve of lithium. With the right investment, Bolivia may become what Kuwait was for oil to the new rechargeable revolution.

18650 lilon battery

A fully developed lithium mine in the Atacama Desert. This is where the material in your 18650 battery most likely comes from.

asteroidc and li

This is a depiction of Asteroid 2012 DA14 which nearly missed Earth a few years ago. It was once famously valued at $195 billion US dollars for the large amount of metals like iron ore, copper, and lithium trapped inside. Maybe one day we won’t have to dig up our backyard to get the resources we need to enjoy ourselves.

So remember, next time you turn on your vaporizer, or other machine that uses li-ion batteries, to think a little about where it came from and what it means for our future.

 

Emergency-Power-Supply

What is a UPS?

A UPS (Uninterruptible Power Supply) ensures that users can save data in emergency situations to avoid unnecessary losses due to power outages. This is a technology developed for power grids, network and medical systems, and other systems that rely on a centralized power supply of a network of computer systems.

Emergency-Power-Supply 

Advantages of EPS (Emergency Power Supply)

An EPS (Emergency Power Supply) has a conversion time that is generally in the millisecond level (2ms-250ms), which fluctuates according to different load characteristics to ensure the timeliness of power supply;

It has strong load adaptability, including capacitive, inductive, and hybrid loads, and strong overload and shock resistance;

There are multiple outputs to prevent failure caused by a single output;

There are fire linkage and remote control signals, which can be switched between manual and automatic;

It can adapt to its environment.  It is suitable for a variety of harsh environments with measures to prevent failure in high and low temperatures and hot and humid environments.  It can work against, salt spray, dust, vibrations, and rat bites;

An EPS has a long service life, fast battery charge, and management capabilities.

 

Differences between an EPS’s backup power and UPS’s power

Applications

An EPS is mainly used in electrical equipment for the fire protection industry.  It is used for those who look for a continuous power supply that can be used in an emergency in case of sudden power grid failure.

A UPS is generally used for precision instrument loads (such as computers, servers and other IT industry equipment), which require a high power supply quality.  It is used for those who look for certain requirements, such as a quick switch-over time to an inverter, output voltage, frequency stability, and purity of output waveforms.

 

Functions

An EPS generally does not have high requirements for a switch-over time to an inverter. Special applications have certain requirements. There are multiple outputs and monitoring and detection functions for each output and a single battery. The daily focus is on bypassing a power supply and switching to an inverter only when the main power fails, and the power utilization rate is high.

The On-Line UPS has only one total output and generally emphasizes its three major functions:

Voltage and frequency stabilization

A quick switch-over time

The rectifier / inverter double-conversion circuit: The inverter is switched to bypass the power supply only when the inverter fails or is overloaded.

The power utilization rate is not high (generally 80-90%). However, some places in European and American countries, where power grids and complete power supplies are used, have switched over to a UPS with a short switch-over time to an inverter (less than 10ms) to save energy.

 

Structure

An EPS mainly provides power for power protection and fire safety. The load has both inductive, capacitive, and rectified non-linear loads, and some loads are only put into operation after the power supply is cut off. Therefore, EPS is required to provide a large inrush current, good output dynamic characteristics, and a stronger anti-overload. A UPS, on the other hand, mainly supplies power to computers and network equipment, and the nature of the load (input power factor) is not much different.

The main purpose of a UPS is to maintain the transferage of information, and the main purpose of an EPS is to prevent major disasters. In other words, a UPS focuses on saving data while an EPS mainly focuses on saving people. Generally, EPS power is large, and the inverter in the machine is in a standby state.

EPS power inverters have a larger redundancy: both the incoming and outgoing cabinets are inside the EPS, and the motor loads are started with variable frequency. The casing and wires are flame retardant, and there are multiple ways to input power, which can be linked with fire protection. An EPS power load is also generally inductive and resistive. It can come with motors, lighting, fans, pumps, and other equipment.

UPS power inverters, on the other hand, have a relatively small redundancy, do not need to be flame retardant, and have no mutual investment function. A UPS power load is also a capacitive load. The main belt device is usually a computer, which is mainly used in computer rooms to ensure uninterrupted power supply and voltage stabilization.

 

Different power supplies

A UPS prioritizes an inverter to ensure its power supply while an EPS prioritizes city power to ensure saving energy. There are differences in the design specifications of the rectifier / charger and the inverter.

An EPS uses an offline power supply; unfortunately, when the utility power fails and an EPS cannot be powered by the emergency battery, it cannot do anything, and consequences are dire.

A UPS is on-line. Even if there is a power failure, it can be alarmed in time. With the backup power in city power supply, the user can grasp the power failure in time and eliminate it without causing greater losses.

 

Precautions against using a UPS

A UPS should be used in a well-ventilated and clean environment to facilitate heat dissipation.

Do not carry inductive loads, such as money counters, fluorescent lamps, air conditioners, etc., to avoid damage.

The output load control of a UPS is best at around 60%, and the reliability is the highest.

A UPS with a light load (such as a 1000VA UPS with a 100VA load) may cause deep discharge of the battery, which will reduce the battery life and should be avoided as much as possible.

Appropriate discharge can help the activation of the battery. For example, if the main power is not interrupted for a long period of time, the main UPS should be manually disconnected and discharged once every three months.

A small-sized UPS can generally be on and off when the employees are at and off work respectively. A UPS in a network room must run around the clock, however, since most networks work 24 hours.

A UPS should be charged after discharging to prevent the battery from being damaged due to excessive self-discharge.

The material and chemistry used in the cathode of a battery are vital in determining the battery performance. Currently, the positive electrode materials successfully developed and applied include lithium cobalt oxide (LCO), lithium iron phosphate (LFP), lithium manganate (LiMn2O4), ternary material nickel cobalt manganate (NCM), and nickel cobalt aluminum aluminate (NCA). We will explore a few common chemistries for cathode material in this article.

Himax-battery

  • Lithium cobalt oxide (LCO, LiCoO)

Lithium cobalt oxide, also known as lithium cobaltate, are particularly special because they were the first commercially produced lithium batteries. Lithium cobaltate has many benefits with its high discharge platform, simple synthesis process, high capacity, and good cycle performance.  However, cobalt can be relatively toxic, and the price high.  It is also difficult to guarantee safety when making large LCO batteries.

Most 3C electronic batteries still use LCO rather than a higher-capacity ternary material because lithium cobalt oxide material has greater density per volume. Lithium cobalt oxide is predominantly used in cell phones and laptops.

Furthermore, the theoretical capacity of lithium cobalt oxide is high, but the actual capacity is only half of what is theorized. The reason is due to the charging process: when the amount of lithium ions extracted from lithium cobalt oxide material is less than 50%, the morphology and crystal form of the material can be kept stable.  However, when the lithium-ion extraction amount increases to 50%, the lithium cobaltate material undergoes a phase change. If charging continues at this time, cobalt will dissolve in the electrolyte and generate oxygen, which affects the stability of the battery cycle life and performance.

LiFePO4-Battery

  • Lithium iron phosphate (LFP, LiFePO4)

There is wide interest in Lithium iron phosphate cathode materials.

Its main features include non harmful elements, low cost, and good safety and cycle life (its lifespan can reach 10,000 cycles). These characteristics have made lithium iron phosphate materials popular for research, and they are widely used in the field of electric vehicles.

The main disadvantage of lithium iron phosphate is its low energy density. The voltage of lithium iron phosphate material is only about 3.3V, which makes the LFP battery have lower energy storage. Lithium iron phosphate also has poor conductivity and needs to be nanometer-sized. It can be coated to obtain good electrochemical performance, which makes the material become “fluffy” and the compaction density low. The combined effect of the two makes the energy density of lithium iron phosphate batteries lower than that of lithium cobalt oxide and ternary batteries.

Recently, accidents concerning new energy vehicles have occurred and frequently show up on the news. People hope to improve upon the materials and its safety performance by modifying it: some researchers have mixed lithium iron phosphate with manganese to make it have higher voltage and energy density while others have mixed it with NCM ternary material.

 

  • Ternary materials (NCM, NCA)

Ternary material is the common name of lithium nickel cobalt manganese oxide (LiNixCoyMn1-x-y02), which is very similar to lithium cobaltate. This material can be balanced and adjusted in its specific energy, cycle, safety, and cost.

The different configurations of nickel, cobalt, and manganese bring about various properties to the material: increasing the nickel content increases the capacity of the material but makes the cycle performance worse; the presence of cobalt makes the material structure more stable but the content too high and capacity reduced; the presence of manganese reduces costs and improves its safety performance, but its high content destroys the layered structure of the material.

Due to the many factors that need to be considered when using these elements, the focus of ternary material research and development has been on finding the proportional relationship between nickel, cobalt, and manganese in order to achieve optimal performance.

 

If you are interested in the Himax’s high discharge and custom-made batteries, please reach out to us at sales@himaxelectronics.com. We can be the one-stop solution to your products’ needs.

Forklift Battery

Forklift Battery

A forklift battery actually has two functions:

 

  1. To provide a power source to the forklift.
  2. The lesser-known function is to provide mass as a counterweight, which aids the forklift’s lifting capacity.

 

The most common forklift batteries are Lead Acid, but a trend to use Lithium iron phosphate replacement battery due to advantages of higher capacity, safety, and more cycles, etc.

Forklift LiFePO4 Battery

However, we found that there are more forklift customers are require LiFePo4 battery and a few low-temperature requirement. For a simple comparison:

  • Price

Lead-Acid battery: $$$

 

LiFePO4 battery: $$$$$$$$$$

 

  • Features

LiFePO4 battery > Lead Acid battery

 

Let’s take an example if the working environment is the low temperature like freezer inventory, so Lithium iron phosphate must be better due to working at low temperatures for a long time, and low-temperature charging required.

 

  • Weight

Lead-Acid battery: More Heavy (70kg and 80kg per kWh of usable capacity)

 

LiFePO4 battery: Lighter (10kg and 15kg per kWh of usable capacity)

 

  • Cost per cycle

LiFePO4 battery (more charge & discharge cycles) > Lead Acid battery

 

12v Forklift Battery

The cycles count of traditional Lead-acid battery is around 500–600 times, LiFePO4 battery is around 2000 times (The promise cycles of Grepow Lithium iron phosphate battery is 1500 times / 3 years)

 

In addition to the high initial cost of Lithium iron phosphate battery, it is free of replacement and maintenance cost, that’s why LiFePO4 battery is more economical than Lead Acid even higher initial cost.

Drones Battery

Whether you are planning to buy a RC drone as a gift to gift someone or want to buy one to fly in your leisure time, some mini RC drones with hidden camera options that can be used as a    spy video camera, others with LED blades that can be flown at night. With so many designs and features to choose, following are some useful tips for buying some of the best RC drones available from the market:

 Drones Battery

Ready- Made vs Build-Your-Own

For teens, RC drones can be a wonderful hobby. It allows them to go outside and develop technical skills to operate various types of gadgets and vehicles.  For adults, flying these drones can be a great way to relieve stress from work and studies. Comparing to other RC gadgets and vehicles RC drones can be quite complicated to operate.Therefore, you need to practice a lot before flying them outdoors. On the other hand,  before buying an RC drone, you need to choose between ready-made or build-your-own option.

Ready-made RC drones are perfect for those who wish to fly one without considering technical and mechanical sides. Ready-made RC drones are usually preferred by newbie’s as it is easier to operate than build-your-own drone.

Those people who prefer an RC drone kit and build it from scratch are usually those who are interested in exploring everything about their RC drones. If you build one by yourself,  you can even customize it and improve its performance. However, bear in mind that it requires a lot of time, patience and efforts.

Rc battery

Gas and Electric Powered RC Drones

Generally speaking, RC drones that run on gas are more rare and expensive than electric ones. They are also more complicated to operate and fly.

Electric ones are less expensive than gas powered RC drones and can be easily operated outdoors. Although their battery packs can be quite expensive, however, they are easier to maintain and operate.

 

Indoor and Outdoor Drones

Indoor RC drones are perfect for newbie’s and amateur players as they are not as powerful as outdoor RC drones. Moreover, they can only go up to a certain level as they are meant to be used indoors.

Also, you need to make sure that no obviously objects or pets getting into your road when flying RC drones indoor.

Outdoor RC drones are more expensive and powerful than indoor drones and can be easily operated from a wide distance.

Outdoor drones are not recommended for new players as they can harm travelers or vehicles if they get crashed from a high height.

 

Mini vs Large Drones

RC drones come in a variety of shapes and sizes. Smaller RC drones do not cause any severe damage in case of an accident. They are quite versatile and can be flown indoors and outdoors as well. They’re perfect for new players and do not require much time to set up.

However, they are not as sturdy as bigger RC models.

Larger drones are more suitable for professional players. They closely resemble real helicopters and can be easily flown in windy places.

Bigger models can be quite expensive and you need to follow certain rules while flying such drones outdoors.

RC drones battery

LED Blades for RC Drones

RC drones are equally fun when flown at night. You can use special blades that consists of bright neon and LED lights for a better night vision. You can even customize your blades yourself with LED strips. Whether you are flying your drone during the day or night time, try to avoid flying them in public places.

 

Currently on the market common drone batteries are mainly divided into three kinds.
1. lithium polymer batteries, with high energy density, lightweight features, most stores sell drones mostly powered by lithium polymer batteries.
2. lithium batteries: higher price, but large capacity, lightweight, high stability, and longer service life than lead-acid and nickel-metal hydride batteries. 3. nickel-metal hydride (Ni-MH) batteries: the battery can be used to power drones.
3. nickel-metal hydride (Ni-MH) batteries: moderately priced, but heavier, with longer safety and service life, suitable for large drones that require long flight times.

Li-ion batteries are the most common type of UAV batteries nowadays, which have the advantages of high energy density, large capacity, light weight and easy charging. Polymer batteries are one of the thinnest and lightest drone batteries, capable of meeting the energy needs of small drones, but relatively susceptible to temperature effects. From a comprehensive point of view, Li-ion batteries have become the most popular type of drone batteries on the market.

Common Drone Battery Voltages and Capacities

Drone batteries come in a variety of voltages, with 3.7V, 7.4V, 11V, 14.8V, and so on being commonly used. The higher the voltage, the more power and speed the drone can provide, but at the same time the battery will be heavier and larger.
Generally speaking, small drones use 3.7V or 7.4V batteries, while larger drones require higher voltage batteries to provide sufficient power and speed. But at the same time, the battery voltage also needs to be matched with the motors used in the drone to ensure the efficiency and life of the motors.

Batteries used in drones generally have a capacity of 500mAh to 10,000mAh. The higher the capacity, the longer the battery will last, but it will also be heavier and bulkier.
For small drones, a battery with a capacity of 500mAh to 1000mAh is the most common choice, while larger drones require a higher capacity battery to provide sufficient battery life. Battery capacity also needs to be considered in relation to the weight, flight speed and altitude of the drone.

Maintenance and Repair

The maintenance of an RC drone includes changing the motor and preventing it from overheating. For beginners, it is recommended to seek for some professional help in case a drone is damaged or is not properly working.

A battery with lower C rate can negatively affect the speed and overall performance of your drone. In order to maximize the life cycles of your drone’s battery, please wait for at least half an hour to recharge your drained battery. Also, avoid overcharging it.

You can also join an online website or group to get valuable insights and information regarding RC drones. You can follow various threads and blogs to get updates and reviews for the latest RC drone kits.

 

 

Keep an eye out on Himax’s official blog, where we regularly update industry-related articles to keep you up-to-date on the battery industry and related peripheral market.