According to the Physorg website, researchers at Northwestern University have developed an electrode for lithium-ion batteries that allows the battery to retain 10 times more power than the prior art, and the battery with the new electrode can be fast charging, increasing by 10 Double rates.

Battery capacity and fast charging are two major battery limitations. The capacity is limited by the charge density, which is how much lithium ions the two poles of the battery can hold. Fast charging is limited by the rate at which lithium ions reach the negative electrode from the electrolyte.


The negative electrode of the existing lithium battery is formed by stacking a carbon-based graphene sheet layer, and one lithium atom needs to be adapted to 6 carbon atoms. In order to increase the amount of electricity stored, scientists have tried to use silicon instead of carbon so that silicon can be adapted to more lithium, reaching 4 lithium atoms corresponding to 1 silicon atom.

However, silicon can significantly expand and shrink during charging, causing rapid breakdown and loss of charge capacity. The shape of the graphene sheet also limits the charging rate of the battery. Although they are only one carbon atom thick, they are very long. Since it takes a long time for lithium to move into the middle of the graphene sheet, the phenomenon of ion “traffic jam” occurs at the edge of the graphene sheet.

Now, the research team has solved the above problems by combining two technologies. First, in order to stabilize the silicon to maintain the maximum charge capacity, they added silicon clusters between the graphene sheets, and the elasticity of the graphene sheets was used to match the change in the number of silicon atoms in the battery, so that a large number of lithium atoms were stored in the electrodes. The addition of silicon clusters allows for higher energy densities and also reduces the loss of charge capacity due to silicon expansion and shrinkage, which is the best of both worlds.

The chemical oxidation process is used to fabricate micropores from 10 nm to 20 nm on graphene sheets, which are called “face defects”, so lithium ions will reach the negative electrode along with this shortcut and will be stored in the negative electrode by reacting with silicon. This will reduce the battery charging time by a factor of 10.

The new technology can extend the charging life of lithium-ion batteries by 10 times. Even after 150 cycles of charging and discharging, the battery energy efficiency is still five times that of lithium-ion batteries on the existing market. And the technology is expected to enter the market in the next three to five years.

Himax LiFepo4-battery-pack

The positive electrode of lithium-ion batteries is lithium iron phosphate material, which has great advantages in safety performance and cycle life. These are one of the most important technical indicators of power battery. Lifepo4 battery with 1C charging and discharging cycle life can be achieved 2000 times, the puncture does not explode, it is not easy to burn and explode when overcharged. Lithium iron phosphate cathode materials make large-capacity lithium-ion batteries easier to use in series.

Lithium iron phosphate as cathode material

Lifepo4 battery refers to a lithium-ion battery using lithium iron phosphate as a positive electrode material. The positive electrode materials of lithium-ion batteries mainly include lithium cobaltate, lithium manganate, lithium nickelate, ternary materials, lithium iron phosphate, and the like. Among them, lithium cobaltate is the positive electrode material used in most lithium-ion batteries. In principle, lithium iron phosphate is also an embedding and deintercalation process. This principle is identical to lithium cobaltate and lithium manganate.

 lifepo4 battery advantages

1. High charging and discharging efficiency

Lifepo4 battery is a lithium-ion secondary battery. One main purpose is for power batteries. It has great advantages over NI-MH and Ni-Cd batteries. Lifepo4 battery has high charge and discharges efficiency, and the charge and discharge efficiency can reach over 90% under the condition of discharge, while the lead-acid battery is about 80%.

2. lifepo4 battery high safety performance

The P-O bond in the lithium iron phosphate crystal is stable and difficult to decompose, and does not collapse or heat like a lithium cobaltate or form a strong oxidizing substance even at a high temperature or overcharge, and thus has good safety.

It has been reported that in the actual operation, a small part of the sample was found to have a burning phenomenon in the acupuncture or short-circuit test, but there was no explosion event. In the overcharge experiment, a high-voltage charge that was several times higher than the self-discharge voltage was used, and it was found that there was still an Explosion phenomenon. Nevertheless, its overcharge safety has been greatly improved compared to the ordinary liquid electrolyte lithium cobalt oxide battery.

3. Lifepo4 battery long cycle life

Lifepo4 battery refers to a lithium-ion battery using lithium iron phosphate as a positive electrode material.

The long-life lead-acid battery has a cycle life of about 300 times, and the highest is 500 times. The lithium iron phosphate power battery has a cycle life of more than 2000 times, and the standard charge (5-hour rate) can be used up to 2000 times.

The same quality lead-acid battery is “new half-year, old half-year, maintenance and maintenance for half a year”, up to 1~1.5 years, and the lifepo4 battery is used under the same conditions, the theoretical life will reach 7~8 years.

Considering comprehensively, the performance price ratio is theoretically more than four times that of lead-acid batteries. High-current discharge can be quickly charged and discharged with high current 2C. Under the special charger, the battery can be fully charged within 1.5 minutes of 1.5C charging, and the starting current can reach 2C, but the lead-acid battery has no such performance.


4. Good temperature performance

The peak temperature of lithium iron phosphate can reach 350 ° C -500 ° C while lithium manganate and lithium cobaltate are only around 200 ° C. Wide operating temperature range (-20C–+75C), with high-temperature resistance, lithium iron phosphate electric heating peak can reach 350 °C-500 °C, while lithium manganate and lithium cobalt oxide only at 200 °C.

5. Lifepo4 battery High capacity

It has a larger capacity than ordinary batteries (lead-acid, etc.). The monomer capacity is 5AH-1000AH.

6. No memory effect

Rechargeable batteries work under conditions that are often not fully discharged, and the capacity will quickly fall below the rated capacity. This phenomenon is called the memory effect. Memory like nickel-metal hydride and nickel-cadmium batteries, but the lifepo4 battery does not have this phenomenon, no matter what state the battery is in, it can be used with the charge, no need to discharge and recharge.


7. Lightweight of lifepo4 battery

The lifepo4 battery of the same specification capacity is 2/3 of the volume of the lead-acid battery, and the weight is 1/3 of the lead-acid battery.

8. Lifepo4 batteries are environmentally friendly

The battery is generally considered to be free of any heavy metals and rare metals (Ni-MH batteries require rare metals), non-toxic (SGS certified), non-polluting, in line with European RoHS regulations, is an absolute green battery certificate.

Therefore, the reason why lithium batteries are favored by the industry is mainly environmental considerations. Therefore, the battery has been included in the “863” national high-tech development plan during the “Tenth Five-Year Plan” period and has become national key support and encouragement development project.

With China’s accession to the WTO, the export volume of electric bicycles in China will increase rapidly, and electric bicycles entering Europe and the United States have been required to be equipped with non-polluting batteries.

The performance of the lithium-ion battery depends mainly on the positive and negative materials. Lithium iron phosphate is a lithium battery material that has only appeared in recent years. Its safety performance and cycle life are incomparable to other materials. The most important technical indicators of the battery.

Lifepo4 battery has the advantages of non-toxic, non-polluting, good safety performance, a wide range of raw materials, low prices, and long life. It is an ideal cathode material for a new generation of lithium-ion batteries.

Himax Lithium-Battery-Shipping

Nowadays, lithium battery is widely used in various industries due to its high discharge rate, rechargeable and pollution-free. With the globalization of economy and trade, the demand of lithium battery in transportation is increasing. How to transport lithium battery correctly is also an important problem that cannot be ignored by lithium battery manufacturers.


What shipping certification does a lithium battery need to pass?

Lithium ion batteries are usually considered as dangerous goods in transportation, so they need to pass multiple shipping certifications to reduce the possibility of accidents. The following is a description of the certifications that may be required to transport lithium batteries.


UN / DOT is a standard for transportation of goods formulated by the U.S. Department of transportation, which has clear provisions on the transportation standard for lithium batteries. Among them, UN38.3 is a regulation for lithium batteries for air transportation.

This test standard covers eight different tests, all of which focus on the hazards of lithium batteries in transportation. In recent years, UN / DOT has passed a new law to prohibit lithium batteries from being installed on passenger aircraft. Therefore, it is predicted that air transportation of lithium batteries may be banned in the future.

IATA (International Air Transport Association)

Unlike other laws and regulations, IATA does not carry out certification test on specific goods transported. IATA only certifies the shipper of the goods to ensure that the shipper understands the relevant requirements of lithium battery transportation. At the same time, the certified shipper still needs to re certify the qualification every year.

IEC (The International Electrotechnical Commission)

As a non-profit standard making organization, IEC compiles international standards for electrical, electronic and other related technologies. Its standards involve general, safety and transportation specifications. In the IEC standard, IEC 62281 is dedicated to the transportation of primary or secondary lithium batteries, which aims to ensure the safety of lithium batteries during transportation.

CE Marking

CE mark is a self declaration made by the manufacturer to confirm that the product meets the EU product safety requirements. The CE safety certification of EU is more comprehensive, which can ensure that products can get safety certification almost in the world. However, the CE mark does not apply to products sold in the United States.

ANSI (The American National Standards Institute)

Like IEC, ANSI is a non-profit standards development organization that develops consensus based standards. ANSI C18.2M and ANSI C18.3M provide safety standards for portable rechargeable batteries.

In addition to some of the above certification, there are many professional or non professional certification of lithium battery transportation in the world, which are suitable for different situations of transportation.

Do you use devices with lithium battery on the plane?

On the plane, passengers can normally use mobile phones, computers, cameras and other devices that use lithium batteries (mobile devices should turn on flight mode). However, these devices must be placed in their carry on luggage and pay attention to the safety of electricity during use.

Spare lithium-ion batteries, lithium metal batteries and electronic cigarettes, which are easy to generate heat or smoke, must also be carried with them. When carrying with them, passengers should also ensure that these electronic devices will not be accidentally started, damaged or short circuited.

In checked luggage, lithium batteries in operation are prohibited. If there is a lithium battery device in your checked luggage, make sure it is completely closed and does not start automatically, and pack it to prevent damage and short circuit. If it is a lithium-ion battery or a lithium metal battery, it should be protected with the manufacturer’s packaging or adhesive tape, and put in a special bag to prevent the risk of short circuit.

If it is a damaged, defective or recalled lithium battery, please do not take it with you. These batteries may cause safety hazards due to overheating or fire, which may be devastating to the aircraft and its passengers.

How do you transport lithium batteries properly?

First of all, before transporting lithium batteries, it is necessary to confirm whether the batteries or consignors have safety certification. According to the requirements of the transporter, test and register the corresponding safety certification, which is the most efficient method for the certification of transport lithium batteries. Some specifications of lithium batteries, transport companies will also require the shipper to sign a dangerous goods contract.


It is also necessary to choose a good transportation company. Because the transportation of lithium batteries is a complicated matter, it is not to pack and mail the batteries directly, so the safety issues in the transportation of lithium batteries must also be considered.

Therefore, it is very wise to choose famous express companies such as USPS and UPS to transport lithium batteries. They have comprehensive transportation guidelines for dangerous goods and a considerable number of trained personnel who understand how lithium batteries work and how to handle them safely.


In addition to registration and selection of transportation companies, there are many details to be done in the transportation of lithium batteries.

First, lithium batteries weighing more than 35 kg must be approved by the national authorities before shipment. The greater the net weight of lithium batteries, the higher the risk level, and the more strict control is required.

Secondly, damaged or defective batteries should not be transported, and batteries should be strictly packaged and labeled with lithium battery shipping products. Finally, used lithium batteries for recycling should not be transported by air unless approved by national authorities and airlines. All these measures are related to the safety of the goods and the life of the transporters, so there can be no negligence.

Under the background of economic and trade globalization, it is an inevitable requirement of the times for lithium battery manufacturers to master the methods of transporting products. How to reduce the possibility of safety accidents as much as possible during transportation is also the preparation that manufacturers and transportation companies must make. Hope you can find this article helpful.


Thank you for your attention!

Himax Lithium-battery-not-allow-on-airplane


You must be traveling so soon, and most probably, that’s why you have landed into this great piece of information. Do you know what is involved when traveling with devices containing lithium batteries? I bet not! That’s why you are on this.

Well, there are restrictions when we talk about traveling on planes. One of those restrictions involves lithium batteries. They may seem small, but the impact they can have when they cause a fire on board is unimaginable. Lithium batteries can produce dangerous heat levels, cause ignition, short circuit very easy, and cause inextinguishable fires. That’s why renowned aviation authorities, including those in the USA, have banned lithium batteries when traveling.

What Batteries are Not Allowed on Airplanes?

  1. Lithium Batteries for Spare – Both lithium polymer and lithium metal are not allowed on planes both in carry on and checked baggage. Lithium batteries have hit news headlines in recent months. Suppose a single cell was to catch fire because of the dangers associated with thermal runways. There have been viral videos on YouTube involving various gadgets raging from hoverboards to a pair of earphones. These videos showed these gadgets burning into flames. Aviation authorities have banned some of these gadgets from getting into planes, and the recent ban was Samsung note 7 smart-phones from the USA after it was proven to cause fire and explosives. There are cautions if batteries have to get into the plane, and they should be kept strictly separated from other flammable materials.
  2. Spillable Batteries – Also known as car batteries or wet batteries too are not allowed in planes. But you can be let in with such batteries if, for instance, you have a wheelchair or using the battery to charge a scooter. You can be allowed to have the batteries on the plane. However, you are advised to inform the plane staff so that they can lay down the necessary measures to pack the batteries for the safe flight properly.

How Can Lithium Batteries Prevent you From Flying?

It would be good to let you know the limitation that air passengers are set to observe as they go with devices using lithium batteries or when traveling with spare batteries.

Here are some guidelines:

  1. Carry Fewer PEDs – PEDs are the equipment used with lithium batteries as the source of power. Such material includes electronic devices like cameras, mobile phones, laptops, e-readers, and medical devices such as portable oxygen generators. While traveling on planes, you are supposed to have less than fifteen devices with you either in carry on or checked baggage.
  2. Battery Content and Ratings – Every installed battery in a PED MUST not surpass the following: for the lithium metal or lithium alloy batteries; you are not expected to carry any lithium with more than two grams.

For the lithium-ion batteries, they should indicate an hour watt rating of less than 100 Wh.

I know you wonder how about that battery of yours with no Wh rating, you have to calculate it using the formula below to determine the watts hours rating.

Volts* ampere-hours = Watts hours.

If your battery’s capacity is shown in milliamp here hours, you will need to divide the ampere-hours by 1000 before executing the math.

  1. Protection From Damages – For the batteries that might be allowed in the plane and carried in checked baggage, measures should be put in place to prevent any damage and prevent any unintentional fire incidences.
  2. Complete Devices Switch Off – The devices on board using lithium batteries; they must be switched off entirely and not in sleep mode or hibernation.

Traveling and shipping lithium batteries can be complicated, and failure to know the traveling and shipping procedures and mechanisms can make you not travel.

How Do You Travel With Lithium Batteries?

  1. Smart Luggage – Some of the newly made suitcases, are coming with the inbuilt charging system to power up your phone. However relaxed, they may sound; it’s important to remember that many airline rules never allow them on board. These suitcases have built-in lithium batteries. It’s advisable to check your luggage to confirm it has the lithium batteries. Remove them from the luggage and carry them on board with you.
  2. Lithium Spare Batteries – If you honestly need to travel with extra lithium batteries, you need to transport them in carry-on luggage with every battery separately to protect and prevent short circuits. We recommend retaining them in the original package, taping over the exposed terminals.
  3. Electronic Cigarettes and Vape Pens – Although some airline companies still term vape pens as dangerous, need to confirm before with them in case rules, and procedures have changed. Otherwise, electronic cigarettes with lithium batteries are allowed on planes but only on carry-on luggage.
  4. Power Banks and External Chargers – Power banks and external chargers that are met to charge other devices have inbuilt lithium-ion batteries. You are advised to transport them with the same care as you do spare lithium batteries.
  5. Shipping Lithium Batteries– All shipping requirements should comply with aviation authority guidelines. For the cargo composing of lithium battery devices – laptops and phones being shipped and you as a staff you are not sure whether they are separately packed, kindly contact your business representative for further assistance.


Traveling with lithium battery devices can pose such a big challenge on board. They are avoided on planes following the dangers associated with them in case they cause a fire. However, there those that are entirely not allowed while others are allowed. If you have to travel with them, you either have them on the carry on or at checked luggage. Aviation authorities have gone ahead to ban them. For those that are allowed, they should be limited to keep the minimal chances of fire occurrence. Authorities are forced to do this despite planes having extinguisher systems because; a fire caused by lithium-ion batteries is so enormous such that the system has proven not to put it out. Mind your devices with lithium-ion batteries when on planes.



I believe everyone knows that due to the structure of cells and the specificity of the chemistry, the battery cannot be charged below the freezing temperature. There are still a lot of companies are advertised as “low-temperature rechargeable“, “low temperature -xx℃ charge” words, Grepow’s low-temperature series battery can also charge in the environment of minus 20 degrees, how is it done? What about charging in a low-temperature environment? In this article, I will tell you how to achieve it.

Why can’t I charge the battery in a low-temperature environment?

Materials of lithium-ion batteries, such as separators and electrolytes, are organic materials with a low melting point. If the temperature is too high, some negative chemical reactions will occur inside the battery, which will seriously affect the battery life and even safety performance.

The key materials of the battery under low-temperature conditions: the conductivity of the positive electrode, the negative electrode, the electrolyte, etc. are reduced, resulting in a decrease in electrical conductivity, which will seriously affect the battery life.

Low-temperature protection is when the temperature is too low, the metal lithium in the battery will deposit, no longer react with the substance, resulting in internal short circuit of the battery, which will cause damage to the battery or cause safety hazard of the battery.

2 ways to charge the battery at freezing temperature

Battery charger self-heating charging

This way is rely on a special charger for heating because it can not be charged normally in a low-temperature environment, so the charger heats the battery till the temperature above the freezing point, and then charge the battery.

This method is more safe and effective, but it takes longer time, because the charger can only perform small-rate discharge heating in a low-temperature environment. Therefore, it will take around 1 to 3 hours to heat up before charging.

Advantages: Able to charge even when the battery is empty

Disadvantages: Longer charging wait time; Rely on a special charger

Condition by BMS / PCM

The battery with BMS / PCM can provide two functions, one is a low-temperature alarm, there will be a warning when the battery charge or discharge below the set value, or the protection function, directly disconnect the discharge to prevent damage to the battery caused by low temperature or accident.

The second type is to start the low-temperature self-heating function through BMS/PCM. The specifications are can be customized. For example, a 5000mAh battery with self-heating function BMS will reserve 1000mAh of power in the battery every time it is discharged. Before the battery charging, the BMS will discharge the reserved power to heat the battery until the rechargeable temperature, then the battery will starting charge automatically. These are all based on the settings of the BMS.

Advantages: The waiting time is short, and the reserved power can be customized according to the needs of the ambient temperature.

Disadvantages: The battery’s operating capacity will be reduced because BMS will reserve a portion of the power for low-temperature charging.



A high rate battery generally refers to a lithium battery, and a lithium-ion battery is a high-charge battery that relies on lithium ions to move between a positive electrode and a negative electrode to operate.


High rate battery

During charge and discharge, Li+ is embedded and deintercalated between the two electrodes: when charging the battery, Li+ is deintercalated from the positive electrode, embedded in the negative electrode via the electrolyte, and the negative electrode is in a lithium-rich state; A battery containing a lithium element as an electrode is generally used. It is the representative of modern high-performance batteries.

Lithium batteries are classified into high-rate batteries and lithium-ion batteries. At present, mobile phones and notebook computers use lithium-ion batteries, which are commonly referred to as high-rate batteries, and true high-rate batteries are rarely used in everyday electronic products because of their high risk.

Lithium-ion batteries have high energy density and high uniform output voltage. Self-discharge is a small, good battery, less than 2% per month (recoverable). There is no memory effect. The operating temperature range is -20 ° C ~ 60 ° C. The regenerative function is excellent, the battery can be charged and discharged quickly, the charging efficiency is up to 100%, and the output power is large. long-lasting. It does not contain toxic or hazardous substances and is called a green battery.

The battery charging

It is an important step in the repeated use of the battery. The charging process of the lithium-ion battery is divided into two stages: a constant current fast charging phase and a constant voltage current decreasing phase. During the constant current fast charging phase, the battery voltage is gradually increased to the standard voltage of the battery, and then the constant voltage is turned under the control chip, the voltage is no longer raised to ensure that the battery is not overcharged, and the current is gradually reduced to the rise of the battery power. Set the value and finish charging.

The power statistics chip can calculate the battery power by recording the discharge curve. After the lithium-ion battery is used for many times, the discharge curve will change. Although the lithium-ion battery does not have a memory effect, improper charging and discharging will seriously affect the battery function.

Charging considerations

Excessive charging and discharging of lithium-ion batteries can cause permanent damage to the positive and negative electrodes. The excessive discharge causes the negative carbon sheet structure to collapse, and the collapse causes lithium ions to be inserted during charging; excessive charging causes excessive lithium ions to be embedded in the negative carbon structure, which causes the lithium ions in the sector to be released again.

The charging amount is the charging current multiplied by the charging time. When the charging control voltage is constant, the charging current is larger (the charging speed is faster), and the charging amount is smaller.

The battery charging speed is too fast and the termination voltage control point is improper, which also causes the battery capacity to be insufficient. Actually, the battery electrode active material does not fully react and stops charging. This phenomenon of insufficient charging is aggravated by the increase in the number of cycles.

The battery discharge

For the first charge and discharge, if the time is long (usually 3 – 4 hours is sufficient), then the electrode can reach the highest oxidation state (sufficient power) as much as possible, and the discharge (or use) is forced to The set voltage, or until the automatic shutdown, such as the ability to activate the battery capacity. However, in the ordinary use of the lithium-ion battery, it is not necessary to operate like this, and it can be charged as needed at any time, and it is not necessary to be fully charged when charging, and it is not necessary to discharge first. For the first time charging and discharging, it is only necessary to perform 1 to 2 consecutive times every 3 to 4 months.

High rate battery application

For electric vehicles and hybrid vehicles, the core technology lies in high-rate batteries. Compared with other types of batteries, powerful lithium-ion batteries have the advantages of high cost and poor safety performance, but they have higher specific energy and long cycle life. Such important advantages, and therefore have a broader development prospect.

High rate battery

The technical development of power lithium-ion batteries is also changing with each passing day. Both the capacity and structure have been improved. Experts say that no matter which technical route the battery manufacturer adopts, it should meet the requirements of high safety, wide temperature difference, and charge and discharge functionality. Strong, high rate discharge and other conditions.

Battery capacity involves technology and costs Lithium-ion batteries can be divided into small batteries and large batteries according to their size. Small batteries are usually used in 3C electronic products. The related technologies and industries have developed very maturely, and the overall profit is decreasing. More than 85% of current lithium-ion battery products are small batteries.

Large batteries are also commonly known as power batteries. There are also two types of small power batteries and large power batteries. The former is mainly used for electric tools and electric bicycles. The latter is used in electric vehicles and energy storage fields, all of which use high rate battery.

At present, three types of electric vehicles, namely, pure electric (EV), plug-in hybrid (PHEV) and hybrid (HEV), are in a period of rapid development, which has attracted much attention from the industry. As the core of the future automotive industry, the development of the powerful lithium-ion battery industry has received unprecedented attention and has been raised to a strategic height by major countries.



We know why lithium gets all the credit: the chemistry that makes these batteries so amazing wouldn’t work half without this particular metal.

Considerably other rechargeable battery-powered battery plans are constrained in manners lithium batteries aren’t!

What many people don’t understand, however, is that lithium remarkably makes up a little of the battery itself. Lithium-based batteries speak to one of the quickest expanding parts of the vitality business today. These batteries are long-lasting. Their life span is up to 5-7 years.

Why LifePO4 batteries are expensive because of what features they entail and these features even make better choice for you:

Safety And Stability

LiFePO4 batteries are most famous for their Strong security profile, the consequence of amazingly stable chemistry. Phosphate-based batteries offer unrivaled thermal and chemical dependability, which increases the well-being of lithium-Ion batteries made with other cathode materials.

When exposed to unsafe circumstances, for example, collision or shortcircuiting, they won’t detonate or burst into flames, altogether reducing any opportunity of mischief. However, you’re choosing a lithium battery and envision use in dangerous or sensitive situations. LiFePO4 is likely your best decision.


Environmental Impact

LiFePO4 batteries are non-harmful, non-polluting, and contain no rare earth metals, settling on them a naturally conscious decision. Lead-acid and nickel oxide lithium batteries convey noteworthy natural hazards (particularly lead corrosive, as inside synthetic compounds debase structure over the team and inevitably cause spillage).

Compared with lead-acid and other lithium batteries, lithium iron phosphate batteries offer critical features of interest, including improved release and charge effectiveness, longer life expectancy, and the capacity to deep cycle while looking after execution. LiFePO4 batteries frequently accompany a more significant expense price tag. Still, a much better cost over the life of the product, minimal maintenance, and rare replacement makes them a valuable investment and an intelligent long-term solution.

Space Efficiency

Also worth mentioning is LiFePO4’s space-efficient features. At one-third, the mass of most lead-acid batteries and almost half the importance of the prevalent manganese oxide, LiFePO4, provide an effective method to make use of space and weight. You are creating your product more efficiently overall.


Performance is a significant fact in figuring out which kind of battery to use in a given application. Long life, slow self-release rates, and less weight make lithium iron batteries an engaging choice. They are relied upon to have a more extended shelf life of realistic usability than lithium-ion. Administration life typically times in at five to ten years or more, and runtime substantially surpasses lead-acid batteries and other lithium formulation. Battery charging time is likewise extensively diminished, another effective presentation perk. However, If you’re searching for a battery to stand the trial of time and charge rapidly, LiFePO4 is the proper answer.

Lithium Iron Phosphate (LiFePO4, LFP) is a rechargeable battery ideal for high power applications. They are the immediate substitution for lead-acid batteries. If you’re interested in buying or custom LiFePO4 batteries, then you have come to the right place. Continue reading to find who makes and where to buy or custom LiFePO4 batteries. Email us:



Lithium iron phosphate batteries (LiFePO4) used for energy storage account for a large proportion in photovoltaic off-grid systems. Compared to solar modules, they are similar in cost although LiFePO4 have shorter lives. Lithium iron phosphate batteries store energy to ensure stable system power at night. The load power is guaranteed on rainy days.

Generation and consumption time

The photovoltaic power generation time and the load power consumption time are not necessarily the same. In photovoltaic off-grid systems, the input is a component used for power generation and the output is connected to the battery. Photovoltaic power is generated during the daytime, and sunlight can generate electricity. The power generation is usually the highest at noon, but at noon, the electricity demand is not high.

For instance, many households use off-grid power stations to use electricity at night. These households should store the energy first and wait until peak electricity consumption (generally at seven or eight o’clock in the evening) to release the electricity.

Power generation and load power

The power of photovoltaic power generation and load power are also not necessarily the same. Photovoltaic power generation is not very stable due to the degree of radiation, and the load is not stable. Like air conditioners and refrigerators, the starting power is very large, and the operating power is usually small. The load will cause the system to become unstable, and the voltage will suddenly rise and fall.

The energy storage battery is a power balance device. When the photovoltaic power is greater than the load power, the controller sends the excess energy to the battery pack for storage. When the photovoltaic power cannot meet the load needs, the controller sends the battery power to the load.


The cost of off-grid systems is high. The off-grid system consists of a photovoltaic square array, solar controller, inverter, battery pack, load, and many other components. Compared with the grid-connected system, the extra battery accounts for 30-40% of the cost of the power generation system, which is almost the same as the component. The service life of the battery is not long either. Lead-acid batteries last generally 3-5 years while the lithium batteries generally last 8-10 years.

New energy-storage LiFePO4 batteries

The new energy-storage lithium iron phosphate battery can increase the energy storage efficiency to 95%, which can greatly reduce the cost of solar power generation. Lithium batteries have an energy efficiency of 95%, while the currently used lead-acid batteries are only about 80%. Lithium batteries are also lighter in weight and have a longer service life than lead-acid batteries. The number of charges and discharge cycles can reach 1600, which means that they do not need to be replaced frequently.

Right now, more and more photovoltaic energy storage have adopted lithium batteries, especially the LiFePO4 batteries,  with technological breakthroughs. The market share of ternary lithium (lithium nickel manganese cobalt oxide batteries, or NMC) or lithium iron phosphate batteries have also gradually increased in photovoltaic off-grid systems.



Lithium iron phosphate battery is one of the safest batteries we using, and its durability and safety are definitely superior to other lithium ion batteries. So, can we overcharge lithium iron phosphate batteries? What range of voltage can be allowed it be overcharged? Under normal circumstances, the answer is NO!

What are lithium iron phosphate batteries?

The lithium iron phosphate battery is a lithium-ion battery that uses lithium iron phosphate as its positive electrode material. It is also called a LiFePO4 battery for short.

What is overcharging?

Overcharging a battery means that the battery charger is charging the battery too far past its fully-charged voltage. For example, the full-charge voltage of a monolithic lithium iron phosphate cell is 3.65V. When the charge exceeds 3.65V, it is overcharged.

What will happen when a lithium-ion polymer (LiPo)  battery is overcharged?

Overcharging a battery cell will cause permanent damage to the cell. In terms of testing for safety, we internally test the different overcharge levels of the battery cells. The following are our test standards:

LiPo battery cell: No fire when the charging voltage reaches 4.8V (one of the necessary conditions)

LiFePO4 battery cell: Charging voltage reaches 10V and does not catch fire (one of the necessary conditions)

Charging with a damaged or non-corresponding charger may also cause overcharging. When the voltage is too high, a large amount of lithium ions overflow from the positive electrode, and lithium ions that cannot be absorbed by the negative electrodes can form dendrites on the surface of the battery, which can cause a short circuit inside the battery. The short-circuit current will generate a lot of heat, and the rapid temperature increase may cause the electrolyte as an organic solvent to burn (organic solvents are extremely flammable). In severe cases, it will cause a decomposition reaction of the positive electrode or the reaction of the negative electrode and the electrolyte. This can generate a large amount of gas; this can result in an explosion especially since the cells are enclosed.

If a battery doesn’t have the Battery Management System (BMS), continuously charging the battery will raise the voltage. In this situation, the lithium ions remaining in the cathode are removed and more lithium ions are inserted into the anode than under standard charging conditions.

It has been observed through ARC studies that the thermal stability of a cell is highly dependent on its state of charge. An overcharged Li-ion cell was found to have much lower thermal stability with an onset runaway temperature as low as 40ºC

Source: Science Direct

Since LiFePo4 is safer, can we over-charge it?

Our suggestion is to never over-charge/discharge a cell!

The most common causes for premature failure of LiFePO4 cells are overcharging and over-discharging. Even a single occurrence can cause permanent damage to the cell, and such misuse voids warranties. A Battery Management System (BMS) is required to ensure it is not possible for any cell in your pack to go outside its nominal operating voltage range.

What is a BMS?

The Battery Management System is a piece of hardware with an electronic system on board that manages a rechargeable battery (cell or pack) and is the link between the battery and it’s user. It can more intelligently manage and maintain each cell, improve battery utilization, prevent battery overcharge and discharge, prolong battery life, and monitor battery status.


If you need a customizable BMS to prevent overcharging or other potential issues, please contact us to get more information.


LiPO batteries often abbreviated as Lithium polymer batteries are rechargeable batteries that use polymer electrolytes instead of liquid electrolytes. RC cars are the popular market of LiPo batteries, you will be needing batteries for running them and LiPo batteries are the best option. They are best known for maintaining a steady voltage, surpassing all its other competitors.



What is the Best LiPo Battery for RC Cars?

All batteries are the same and identical, but that’s not true. They may look identical and share the same capabilities and compatibilities but they are different, in terms of quality and performance. Choosing the right one for your battery can be a task but here we are with guidelines that will help you in opting for the best one.

The best tip is that do your research and testing before the purchasing. Different brands will have different price tags and you must be ready to invest some money in buying them. Don’t buy a cheaper one that can later be heavy on your pocket but don’t buy an expensive one either. Some brands with low prices also offer good quality batteries that will last you longer than the expensive ones. So, the cost cannot determine the quality of the battery but its performance does. Make sure to do independent testing, consider battery configuration, and check the connectors as well. Also, make sure to check the reviews.

How Long Does a LiPo Battery for RC Cars Last?

LiPo batteries come with a lot of advantages but it has a shorter lifespan if compared to the nickel batteries. A LiPo battery may last typically fr about 150-300 cycles that totally depends on how it is cared for. Just when you will start using your battery frequently, charging and discharging it, it will ultimately be losing its capacity. You take your battery of 1300 mAH out of the box, but it will drop up to 75%, meaning about 1000 mAH.

A 1000 mAH battery bearing a load of 500 mAH will last for about 2 hours. Similarly, if your load is 2000 mAH then it would only last for 30 minutes. A 5000 mAH battery is quoted to last for about 20-25 minutes depending on the driving speed and your driving habits.

However, there are several methods that you can do for making our battery last longer. It includes the usage of proper charge voltage and balanced charging. Do, all the things that are necessary for maintaining the LiPo batteries for RC cars and you will definitely be treated with good and satisfactory outcomes.

How do you Care for your LiPo Battery for RC Cars?

Generally, good care and maintenance are required for LiPo batteries as they are a little too sensitive demanding some extra attention and care. But you can just ignore them for the fact that they need care because they are giving you a bundle of pros as well, including the lighter weight, higher capacities, higher discharge rates, and much more.

Here are some of the tips that will lead you to a better performance of LiPo batteries of RC cars.

Compatible Charger

Not just for increasing the lifespan, compatible chargers for LiPo batteries are the first thing that should be taken care of. If you are using a non-compatible charger you are not fully charging your battery, increasing the safety risks, and also contributing to shortening the life of the battery.

Effective Charging

It is advised to not over-discharge your battery and store the battery fully charged. do not overcharge your battery past 4.2 V per cell. Using a compatible charger will also help you in keeping the voltage and current same until it reaches the peak. Make sure to charge it as per instructions. Don’t charge them at below freezing point or near the flammable surfaces. Also, ensure that your battery is not damaged, broken, or swollen.


Do not discharge your batteries more than amperage rates specified on the labels. Discharging the battery low than 3V can lead you to some consequences. Also, ensure that your battery doesn’t exceed the temperature of 140F during the discharging process.


Extra Care and attention are needed even in the storage of LiPo batteries. If you are storing your battery fr more than 30 days or planning to leave it as it is for a month or so, do not leave your battery fully charged. Make sure that you are not storing loose batteries together. It’s also recommended that you should not store your battery at extreme temperatures, near the flammable surfaces or in the direct sunlight. Always disconnect the batteries that are not in use and store them in a non-conductive fireproof container as it is really necessary to prevent any unwanted consequences. Improper storage is the most common problem that occurs with LiPo batteries.


It’s really important to dispose of the LiPo battery properly as it can be a hazard. If you are having a bad day with LiPo batteries then dispose of them in the bins after completely discharging them, and checking the voltage of them. Place the LiPo in a saltwater bath and it will short out the battery, then check the voltage and then dispose them of.

General Care

Don’t disassemble the cells, never dispose of them in fire or use them near flammable surfaces, avoiding the opening and deforming of the cell, avoiding them to not get hit or bend or striking them with sharp edges are a part of some general care that should be don while handling the LiPo batteries for RC cars. You can also use a fire-resistant container to keep your batteries and yourself safe and sound.