The 2020 coronavirus (COVID-19) outbreak has – to put it mildly – created a lot of uncertainty for people all around the world.

By now, hopefully you are doing your part to practice the self-quarantining or “social distancing” behaviors recommended by the World Health Organization to help slow the spread of this new and particularly hardy coronavirus and give the world’s various healthcare systems time and bandwidth to deal with the outbreak.

If so, you may be experiencing a new (or renewed) appreciation for the relative fragility of the production and delivery networks for food, water, energy, and information that aggregate to create the standard of living we’re used to here in the U.S. You may be considering the benefits of being self-sufficient in one or more of these areas, and wondering how realistic that would be. And you may be weighing whether the peace of mind that comes with self-reliance in times of social unrest is worth the effort and expense of actually becoming self-reliant.

Setting aside the healthcare system, which is facing real challenges in the coming weeks, we can say that, fortunately, American infrastructure has been largely able to cope with the changes in shopping behavior, remote working habits, and resource usage the new coronavirus has forced us to make. But if you have found yourself interested in moving toward self-sufficiency lately, know that you are not alone and you are not without trusted professionals to advise you about your options.

As a company born out of the “back-to-the-land” movement that spawned in part from the uncertainty and social anxiety of the 1960s and 1970s, Real Goods has always championed the merits of self-sufficiency and facilitated making it available to anyone who wants to achieve it. From this position, we think it’s worth noting a few things:

We should be grateful that most of our resource infrastructure – power, water, food production, Internet – has been able to handle the shifting demands the COVID-19 pandemic has placed on it.
Ideas like self-isolation, social distancing, and disaster preparedness are not new. For plenty of folks, these are – and have been for decades – lifestyle choices. They are things that come, to varying degrees, with the decision to live “off the grid”.
Moving toward self-sufficiency does not have to be an all-or-nothing endeavor. In fact, we don’t recommend you try to make it one (not many of us could do what Richard Proenneke did). A simple step toward partial self-sufficiency, like setting up a small emergency backup power supply, is enough to make a lot of families feel much better about their overall preparedness when the unexpected strikes.
Self-sufficiency can (and absolutely should) be researched before being attempted. Our own Solar Living Sourcebook is a truly excellent primer on the considerations and basics of off-grid living.
Out of crisis can come opportunity. Think back a few months…Did you catch yourself saying “I’m so busy! If only there were more hours in the day!” a month ago, and then “I’m so bored! How long am I going to be stuck in my house?” a week ago? There may be no time like the present to learn a new skill, catch up on reading, call some long-lost friends or relatives, or deep clean the house.
We are in this together and it’s not going away soon. The spring of 2020 – and likely the summer too – is going to be different from any we’ve lived through before. We are going to need to be patient, get by with less shopping and fewer luxuries, and be helpful to others while respecting their boundaries with social distancing.
We are not attempting to stoke fear, to say “I told you so”, or to leverage this global pandemic for financial gain. We are simply trying to make people aware that if self-sufficiency is a new, enticing, and/or daunting proposition that you’ve recently been forced to confront, there are professionals out there like us and others who specialize in building systems to deliver power and water to people who either need or want to be self-reliant in attaining these essentials.

We’re all in this together, and we here at Real Goods have been helping people secure their own power and water supplies for 41 years now. Give us a call at 800-919-2400 or check out these resources and products if you want to explore your self-sufficiency options.

Self-Sufficiency Resources
The Solar Living Sourcebook
“Solar Power for Beginners” video series with Solar Queen Amy Beaudet
Get a free quote for a battery backup system
Get a free quote for an off-grid solar power system
Get a free quote for a solar water pumping system
Self-Sufficiency Equipment
The Solar Living Sourcebook
Portable emergency backup power sources
Medium (7.5 kWh) integrated backup power supply
Large (over 10 kWh) integrated backup power supplies

Why Do Car Batteries Die in Winter

Car batteries are one of the most important components of any vehicle, yet for some reason, they are often overlooked. Your car needs the electrical charge it gets from the battery to start the engine, which is why you should always be aware of the age and status of the battery in your vehicle. It can be a major inconvenience if you go to start your car one day only to find that the old battery has lost its charge. To help you avoid this issue, and to get the most out of your battery during its natural lifespan, take a look at some of the guidelines below that will help you determine when it is time to change your old car battery.

Average Battery Lifespan

To get started, let’s think about how long a brand new car battery will last under typical driving conditions in a city like Vancouver. There are many factors that affect the amount of time your automobile battery will function efficiently. Weather can have a big impact, especially cold temperatures. The power demands you place on a battery will also have an impact on how long the unit will last. In ideal conditions, a battery can last more than five years. Unfortunately, ideal conditions for a battery are not exactly common in a place like Vancouver, which sees a significant amount of precipitation, as well as hot and somewhat cold weather each year. Also, with the increasing number of electronics owned by a typical person, and the corresponding chargers, cables and devices that connect to a car’s electrical system, the average driver asks more of their car battery than ever before. With these factors in mind, you shouldn’t be surprised if your battery doesn’t last longer than three years. There really is no exact amount of years that a car battery is guaranteed to last, so let’s say the average lifespan in a city like Vancouver could be between three and five years.

When to Change?

There are a few telltale signs that indicate your battery is nearing the end of its lifespan. For the most part, if you check your car battery every six months or so, you should avoid any unwanted surprises or startup issues. If during your check you notice a bad smell coming from the battery that reminds you of rotten eggs, you should start looking for a replacement right away. You should also keep an eye on the regular electrical components of your vehicle such as interior lighting and headlights. If these lights flicker for any reason while you’re driving, idling or starting your car, that is also a good sign your car battery is near the end of its lifespan. You should also make more frequent checks if your car battery is more than three years old, especially if, as discussed above, you live in an area that sees high temperatures in the summer and significantly low temperatures in the winter. One final indicator that your battery needs to be changed is the battery light on your vehicle’s dashboard. When this light starts to appear on a regular basis, regardless of how old your battery happens to be, you should take a look and consider a replacement as soon as possible.

For more helpful tips about car batteries, or if you have any inquiries about other battery Himax, be sure to visit the experts at Polar Battery today!




Lithium iron phosphate battery is a lithium-ion battery that uses lithium iron phosphate (LiFePO4) as the positive electrode material and carbon as the negative electrode material. The rated voltage of the monomer is 3.2V, and the charge cut-off voltage is 3.6V~3.65V.

Application of lithium iron phosphate (LiFePO4) battery

1.Application of the new energy automobile industry

Lithium iron phosphate batteries are widely used in passenger cars, buses, logistics vehicles, low-speed electric vehicles, etc. due to their safety and low-cost advantages. Although, in the current new energy passenger vehicle field, it is subject to the state’s subsidy policy for new energy vehicles. Influence, relying on the advantages of energy density, ternary batteries occupy a dominant position, but lithium iron phosphate batteries still occupy an irreplaceable advantage in fields such as passenger cars and logistics vehicles. In the field of passenger cars, lithium iron phosphate batteries remain mainstream. In the field of special-purpose vehicles, the proportion of lithium iron phosphate batteries is gradually increasing. The use of lithium iron phosphate batteries in the extended-range electric vehicle market can not only improve the safety of vehicles, but also support the marketization of extended-range electric vehicles, eliminating the anxiety of pure electric vehicles such as mileage, safety, price, charging, and subsequent battery issues.


2. Start the application on the power supply

In addition to the power lithium battery characteristics, the starter lithium iron phosphate battery also has the ability of instantaneous high-power output. The traditional lead-acid battery is replaced by a powerful lithium battery with an energy of less than one kilowatt-hour, and the traditional starter motor and generator are replaced by a BSG motor. , It not only has the function of start and stop at idle speed, but also has the functions of engine stop coasting, coasting and braking energy recovery, acceleration assist, and electric cruise.

3. Application of energy storage market

Lithium iron phosphate battery has a series of unique advantages such as high working voltage, high energy density, long cycle life, low self-discharge rate, no memory effect, and green environmental protection. It also supports stepless expansion and is suitable for large-scale electric energy storage. Energy power stations have good application prospects in such fields as safe grid connection, grid peak shaving, distributed power stations, UPS power supplies, and emergency power systems.

With the rise of the energy storage market, in recent years, some power battery companies have deployed energy storage business to open up new application markets for lithium iron phosphate batteries. On the one hand, due to the characteristics of ultra-long life, safe use, large capacity, and environmental protection, lithium iron phosphate can be transferred to the energy storage field, which will extend the value chain and promote the establishment of new business models. On the other hand, energy storage systems supporting lithium iron phosphate batteries have become a mainstream choice in the market. According to reports, lithium iron phosphate batteries have tried to be used in electric buses, electric trucks, user-side, and grid-side frequency modulation.

1) Safe grid connection of renewable energy power generation

The inherent randomness, intermittent news, and volatility of wind power generation determine that its large-scale development will inevitably have a significant impact on the safe operation of the power system. With the rapid development of the wind power industry, especially most wind farms in my country are “large-scale centralized development and long-distance transmission”, the grid-connected power generation of large-scale wind farms pose severe challenges to the operation and control of large-scale power grids.


Photovoltaic power generation is affected by ambient temperature, sunlight intensity, and weather conditions, and photovoltaic power generation has the characteristics of random fluctuations. my country presents a development trend of “decentralized development, low-voltage on-site access” and “large-scale development, medium, and high voltage access” simultaneously, which puts forward higher requirements for power grid peak shaving and safe operation of the power system.

Therefore, large-capacity energy storage products have become a key factor in solving the contradiction between the power grid and renewable energy power generation. The lithium iron phosphate battery energy storage system has the characteristics of fast working condition conversion, flexible operation mode, high efficiency, safety, and environmental protection, and strong scalability. Engineering applications have been carried out in the national wind and solar storage and transmission demonstration project, which will effectively improve equipment efficiency and solve Local voltage control problems, improve the reliability of renewable energy power generation and improve power quality so that renewable energy can become a continuous and stable power supply.

With the continuous expansion of capacity and scale and the continuous maturity of integrated technology, the cost of energy storage systems will be further reduced. After long-term safety and reliability tests, lithium iron phosphate battery energy storage systems are expected to be used in wind power, photovoltaic power generation, etc. Safe grid connection of energy power generation and improvement of power quality are widely used.

2) Lithium iron phosphate battery for grid peak shaving

The main method of power grid peak shaving has always been pumped storage power stations. As the pumped storage power station needs to build two reservoirs, the upper and lower reservoirs are restricted by geographical conditions, it is not easy to construct in plain areas, and it covers a large area and high maintenance cost. Use lithium iron phosphate battery energy storage system to replace pumped storage power station, cope with grid peak load, free of geographical conditions, freedom of location, less investment, less land occupation, low maintenance cost, and will play an important role in the process of power grid peak regulation.

3) Lithium iron phosphate battery for distributed power station

The shortcomings of large-scale power grids make it difficult to guarantee the quality, efficiency, safety, and reliability requirements of the power supply. For important units and enterprises, dual power supplies or even multiple power supplies are often required as backup and protection. Lithium iron phosphate battery energy storage system can reduce or avoid power outages caused by grid failures and various accidents, and ensure a safe and reliable power supply for hospitals, banks, command and control centers, data processing centers, chemical materials industries, and precision manufacturing industries. Play an important role.

4) Lithium iron phosphate battery for UPS power supply

The sustained and rapid development of China’s economy has brought about the decentralization of UPS power users’ demand, which has caused more industries and more enterprises to have a continuous demand for UPS power.

Compared with lead-acid batteries, lithium iron phosphate batteries have the advantages of long cycle life, safety and stability, environmental protection, and low self-discharge rate. With the continuous maturity of integration technology, the cost continues to decrease. Lithium iron phosphate batteries are used in UPS power batteries. Will be widely used.


4. Applications in other fields

Lithium iron phosphate battery is also widely used in the military field because of its good cycle life, safety, low-temperature performance, and other advantages.

Lithium Ion Battery For Boat Or RV
Lithium Ion Battery For Boat Or RV

An example of modern technology implemented in the nautical vessel. Darling Harbor marina, Sydney, Australia.

It’s time. Your RV or boat’s lead-acid battery bank had a good run, but just isn’t able to hold a charge anymore – so what should you do? Using desulphators could help squeeze some more life out of it, but instead of asking how to restore lead-acid batteries that are clearly past their prime, the question you should be asking is: Can I replace lead-acid batteries with lithium batteries in my boat or RV? After all, lithium batteries are becoming the standard for renewable energy storage.

The answer is YES, you can absolutely replace lead-acid batteries with lithium in marine and RV applications – but here are a few considerations to help you decide if upgrading to lithium batteries is the right lead acid battery alternative for your boat, camper, or RV.



Lead Acid vs. Lithium: Depth of Discharge

Depth of Discharge, or DoD, is how much of your battery bank’s stored energy can actually be used without dramatically reducing its life. For example, a 100Ah (amp hour) lead-acid battery rated for 25% DoD means you need to plan to use only ¼ of its rated capacity (so 25Ah), leaving the other ¾ in the battery, unused.

  • DoD for lead-acid batteries – both flooded (which you have to add water to periodically) and sealed (“maintenance-free”) – is typically in the 25% – 50% range. Your battery will last at least twice as long if you regularly discharge it 25% than if you regularly discharge it 50%. Keep in mind that if you don’t have a sunny day to recharge your batteries after a day of use, the DoD will go down again the next day – so planning to use 25% per day will allow you to use less than the 50% maximum after two days of use.
  • On the other hand, DoD for lithium ion batteries is 80% or more, allowing you to use most or even all of the battery’s stored energy. That means a 100Ah lithium battery rated for 80% DoD can safely provide you with 80Ah without being harmed.

As a result, a lithium battery bank can be much smaller than a lead-acid battery bank to provide the same amount of usable energy. For example, if you need 100Ah of energy a day, you would need a 400Ah lead-acid battery bank to stay at 25% DoD, but would only need 125Ah of lithium at 80% DoD. That is a significantly smaller battery bank with lithium batteries.

Lead Acid vs. Lithium: Cycle Count

Cycling a battery means discharging it to any amount and recharging it to a fully charged state. If you cycle your battery bank every day for a year, that’s 365 cycles. If you only use it on the weekends, and keep the bank topped off the rest of the time, that’s 104 cycles a year.

A cycle is a cycle regardless of how deep the discharge is, but the depth of discharge directly affects how many cycles you can expect your battery to last. A battery’s specs will tell you how many cycles to expect from it when discharging to its rated DoD.

  • A standard flooded lead-acid battery can have about 2500 cycles at 25% DoD
  • A standard sealed lead acid battery can have about 1200 cycles at 25% DoD
  • Unlike lead-acid, lithium batteries don’t have a cycle curve under 80% DoD. Beyond 80%, the cycle count can drop dramatically. A typical lithium battery can have 5000+ cycles at up to 80% DoD. That’s 4x the cycles at over 3x the DoD. That’s a much longer lived battery bank with lithium batteries.

Lead Acid vs. Lithium: Charge/Discharge Rate

In addition to how much of a battery’s capacity you use, it also matters how fast you use it. Again using the 100Ah battery example, if you have a 10 amp (A) load, that can drain the battery completely in 10 hours  (100Ah ÷ 10A = 10 hours). That is considered a C/10 rate. Likewise, if you have a 50A load on the same battery, that would drain it in 2 hours  (100Ah ÷ 50A = 2 hours). That is a C/2 rate. Most batteries are rated at their C/20 rate, emptying the battery in 20 hours.

If you have a high-current load in your system, or are charging it very quickly with a high current, such as your alternator or shore power, you need to consider the charge/discharge rate of the battery bank. If you need a higher rate than the batteries can handle, you would need to increase the battery bank by adding more batteries in parallel so that the batteries can share the current between themselves. This may result in needing a battery bank that has a higher Ah capacity than you need to power your loads, just to handle the high current.

Likewise, too slow of a charge of lead-acid batteries can cause premature sulphation, shortening their life. This is not a problem with lithium.

  • Lead-acid batteries tend to perform best between C/8 and C/12 rates. So our 100Ah battery would want to be charged or discharged at between 8A and 12A. Wiring three batteries in parallel would permit three times the rate, as it shares the current between the three, so 24A to 36A.
  • Some lithium batteries can generally handle a C/1 rate, or even higher for short periods depending on the battery. This means a 100Ah lithium battery can handle 100A (or more) of charge/discharge current. Most manufacturers recommend no more than a C/2 rate on a regular basis for best battery life, but it is good to know the extra power is there with lithium batteries if you need it. Be sure to check the manufacturer’s specs when selecting a lithium battery, as some do not support as high of a current as others.

Lead Acid vs. Lithium: Voltage Sag

You may be familiar with the voltage of your boat or RV’s battery bank sagging, or dropping to 11V or lower when trying to run a high-power load such as your winch, windlass, or air conditioner. When running a heavy AC load off the inverter, the voltage could drop below the low voltage cutoff, causing the inverter to turn off when you need it most. Likewise, if you are running a DC load like your bow thruster directly off the battery bank, you need it to maintain a high enough voltage for it to work when you really need it to work. Due to lithium batteries’ voltage curve and ability to handle high current, loads like these will not cause the voltage to drop dramatically, eliminating the problem of voltage sag.

Lead Acid vs. Lithium: Size and Weight

With a higher DoD, higher cycle count, and higher charge/discharge rate, it’s easy to see how using lithium batteries in your RV or boat saves space by requiring a physically smaller battery bank…and I don’t need to explain the advantages of saving space in an already tight spot. But there’s yet another physical benefit of replacing lead-acid batteries with lithium for RV and marine applications: Lithium batteries also don’t have the crazy weight from being made with lead! Lighter weight means higher fuel efficiency, saving you additional money in gas or diesel costs.

Lead Acid vs. Lithium: Safety

Safety is always a primary consideration when designing a solar system, but it becomes even more important when your system is on a boat far from shore, or an RV on a remote road. Different battery chemistries have different risk factors. Obviously, abusing any type of battery can create a dangerous situation. But with normal, and perhaps even a bit of rough treatment, the different batteries have different safety concerns that need to be addressed.

  • Flooded lead-acid batteries have an acid and water electrolyte in the battery that has to be checked on a regular basis. During normal charging cycles, this mixture turns into a gas that needs to be vented outside. A buildup of the gas inside a vehicle or vessel can be explosive. Proper ventilation mitigates this concern. The outgassing of the battery is normal, but requires owners to regularly check to see when the electrolyte level gets low from the outgassing. If low, it needs to have more distilled water added. This runs the risk of acid spills if overfilled or overcharged. This requires you to be prepared with proper safety equipment including gloves, safety glasses, and baking soda to neutralize the acid if needed.
  • Sealed lead-acid batteries do not have outgassing or electrolyte levels to check, as they do not outgas. Normal battery safety measures should be followed, like checking for tight cable connections, corrosion, and preventing physical damage to the battery itself.
  • Lithium batteries also do not outgas, but certain types (the ones with cobalt, known as lithium cobalt oxide or LCO) can experience thermal runaway – a condition where the battery starts to get hot, which causes it to react to the heat and get hotter and hotter until it catches on fire. LCO batteries are most commonly used in cell phones, hoverboards, and electric cars, and are generally not recommended for mobile applications.

So are lithium batteries any safer than other batteries? Yes – when they don’t contain cobalt. Lithium ferrous phosphate (LFP or LiFePO4) chemistry has become the standard lithium battery for marine, RV, and general solar PV use because they have no thermal runaway issues. They are very safe, can be installed indoors, and are a perfect solution for mobile living and recreation. Just as with sealed lead-acid batteries, making sure the cables haven’t shaken loose with vibration from travel, and a visual inspection to ensure all is well is all that is needed.

Lead Acid vs. Lithium: Temperature

Lead acid battery temperature de-ration table

Lead Acid Temperature Deration

Temperature has different impacts on different types of batteries. A lead-acid battery’s capacity is rated at 80°F (26°C), but the colder it gets, the more capacity falls. So our 100Ah lead-acid battery at 80°F holds only 76Ah at 40°F (4°C). As a result, if you know you are going to be using your battery bank in the winter, and they will be in an unconditioned location (not heated or cooled), you need to oversize your battery bank to make up for the smaller capacity when cold.

Lead-acid batteries also perform best when charged at different rates based on temperature. As a result, most quality solar charge controllers have a battery temperature sensor to report back to the charge controller.

Lithium batteries maintain the same capacity regardless of the temperature, and do not need their charging rate adjusted to account for temperature.

However, while you can run your loads in freezing temperatures, you cannot charge a lithium battery in sub-freezing temperatures (below 32°F or 0°C). A Battery Monitoring System (BMS) will often have cold temperature cut-off, preventing the battery from being charged when it is too cold.

12v 300Ah Lithium BatteryIf your lithium battery bank is in a cold environment, you need to either get a battery that has a built-in heater like the Himax battery, and/or build an insulated battery box to hold in the heat generated while charging.

Lead Acid vs. Lithium: Lifetime Cost

If you compare lithium batteries to lead-acid batteries Ah to Ah, lithium batteries are more expensive. But step back and look at the bigger picture – taking into account everything we’ve covered so far – and you can see how lithium batteries can actually save you money, time, and hassle in the long run.

Let’s look at some cost examples when designing a battery bank for a 12V system that uses 1400Wh a day.

Sealed AGM vs. Lithium

For a lithium bank: 1400Wh x 2 days of autonomy ÷ 80% DoD (after 2 days without sun, daily is 40%) ÷ 12V battery bank = 290Ah battery. I’ll round up to 300Ah and use two  1800 at $1300 each for a total of $2600.For a sealed AGM battery bank: 1400Wh x 2 days of autonomy (days without sun) x 1.11 temperature derate (60F) ÷ 50% DoD (25% x 2 days without sun) ÷ 12V battery bank = 518Ah bank. I’ll round up to 600Ah and use 200Ah 12V batteries at $600 each for a total of $1800.

At first glance, the lithium bank costs more than the AGM bank. But when you consider cycle counts (1200 for the AGM and12v 250Ah LiFePO4 Battery 5000 for the lithium), the lithium battery bank will last 4x longer than the AGM bank. You would need to buy four AGM battery banks for $7200 – and spend the time shopping for and installing them – to match the lifetime of one lithium bank for $2600. Plus you’d miss out on all the previously mentioned benefits of lithium batteries for a boat or RV.



Flooded Lead Acid vs. Lithium

The math is the same for a flooded lead-acid battery bank as for a sealed one. So let’s again compare a 518Ah 12V lead-acid battery bank with the 300Ah 12V lithium bank. I’ll round up to 675Ah to use the popular Trojan T-105 225Ah 6V batteries at $175 each. Using 6V batteries will require 2 in series to get 12V, so I’ll need 6 for a total of $1050. We are still going to use two of the KiloVault HLX1800 for $2600, or I could use a single 300Ah 12V battery for the $2500. Some people prefer installing two batteries in parallel for redundancy and find that the size and weight of two batteries may be easier to manage than one.

The price gap between flooded lead-acid and lithium is greater than with AGM. With flooded’s 2500 cycles versus lithium’s 5000 cycles, a well maintained flooded battery bank can last half as long as lithium. But a poorly maintained flooded battery bank can quickly become a boat anchor in a year or two. So the flooded is a slightly less expensive solution than sealed lead-acid at $2100 for two banks vs. $2600 for one lithium. But again, you have the advantages of the smaller, lighter, safer battery bank, the higher current capability, and minimal maintenance needed on the lithium. It may be worth the extra $500 to you to go lithium.

Lead Acid vs. Lithium for Marine and RVs: The Verdict

By choosing lithium batteries as a lead-acid battery alternative for marine/RV applications, you will need fewer batteries, and those batteries will last longer, cycle  deeper, deliver more power, and weigh less.




                                                   Himax – 150Ah 12V Lithium Battery


Now that you’re convinced lithium is the best way to go, you need to be aware of a few things when replacing a lead-acid battery with lithium. The term “drop-in replacement” has become popular, but the reality is there are a few other things you’ll need to do to safely upgrade from lead-acid to lithium batteries in your boat or RV.

Charge Controller/Charging Profile

If you are currently charging your lead acid batteries with solar, your alternator, and/or shore power, you may be able to keep your existing charge controller or inverter/charger. The charging and low voltage cutoff profiles for lithium batteries are a little different from lead-acid, so you need chargers that have adjustable charge rates. Different batteries will have different preferences, so be sure to see the manufacturer’s recommendations when configuring your charger. They will often recommend a Bulk and Absorb rate of around 14V, with an Absorption time of as little as 2 minutes, significantly less than the standard for lead-acid. With a Float voltage of just below 14V, you can maintain the charge without overcharging it. Because lithium has a very narrow voltage window, 12V is generally the lowest voltage you want before you shut off your loads.

Note: Unlike lead-acid batteries, lithium batteries do not always need to be recharged to their full 100% capacity. They actually prefer being in a partial state of charge. If you are going to be leaving your boat or RV for a season of storage, it is recommended that you leave the battery bank at around 90% state of charge. This leaves plenty of energy for small loads like the bilge pump or CO2 alarm, but helps maintain a healthy battery bank until you can get back to normal use.

Cranking Amps / Starter Battery

With lead-acid batteries, we are used to seeing a rating of CCA (cold crank amps) to show how many amps can be used to start an engine in the cold weather. Lithium batteries do not have the CCA rating. If you intend to replace a lead-acid battery with lithium for your starting battery, make sure the new lithium battery is rated to handle enough current to do so. Not all of them are. We see a lot of people continue to use a lead-acid battery as the starter, with lithium used only for the house/service battery. This also gives you a bit of a backup, so that if everything goes wrong with your house/service battery, you still have the starter battery available.


Unlike lead-acid batteries, lithium batteries have very little internal resistance and can take as much charging current from the alternator as needed. But since alternators are not designed to run at full speed for long periods, this can result in the alternator working too hard, overheating, and damaging itself. There are a few ways to prevent this from happening.

Use a DC/DC Converter

By installing a DC-to-DC converter between the alternator and the lithium battery bank, you can limit the amount of current the battery draws from the alternator. It is recommended that you only draw from the alternator at half its rating, so for a 60A alternator, a 30A DC/DC converter like the Bluetooth-enabled Victron Energy Orion-Tr Smart 12/12-30A charger is a good option. You can use multiple DC/DC converters in parallel to increase the rate for larger alternators.

Victron Orion-TR Smart DC/DC Converter system diagram

Victron Orion-TR Smart DC/DC Converter setup

Replace the Alternator

You can replace the alternator with one designed for higher amperage charging and temperature control. Balmar makes great alternators and external regulators for this. They monitor the temperature and will wind down to appropriate amperage if the alternator gets too hot. If you currently have a V-belt, you may need to modify the engine for a serpentine belt before you can use the larger Balmar alternator.

Low Voltage Disconnect

The ability to automatically disconnect your DC loads gives you control over how low you discharge your battery bank. An automatic switch such as the Victron Energy Smart BatteryProtect can be configured via Bluetooth for excellent control of your system. It can turn your non-critical loads on or off based on a configurable voltage setting.

Battery/Bank Monitoring

KiloVault CHLX Bluetooth App

Any good battery system should have the ability to monitor both the individual batteries, and the whole battery bank. Watching more than just the voltage, but also how many amps go in and out of the battery bank and the temperature gives you a complete view of the health and state of charge of the entire bank. Some lithium battery Battery Monitoring Systems have Bluetooth or WiFi built in to allow you to monitor it from the phone. For example, the KiloVault HLX and CHLX batteries have Bluetooth to your Smartphone to see down to the cell level of each battery.






The Victron Energy Smart Shunt provides a low cost method to monitor your whole battery bank via Bluetooth from your smartphone. It does not include a display, so you can only view it via Bluetooth.

Victron SmartShunt system diagram

Victron SmartShunt – Monitors Batteries via Bluetooth










The Victron Energy Smart Battery Monitor BVM-712 gives you a local display for convenient viewing of battery voltage, current, power, amp-hours consumed, and state of charge (SoC). It can also be viewed via BlueTooth.


Whether you are looking for a new battery bank for your RV or boat or considering replacing your aging lead-acid batteries, deep-cycle lithium-ion batteries – specifically LiFePO4 batteries – are an excellent solution. Compared to lead-acid batteries, LiFePO4 batteries offer more power, higher current, a longer life, smaller footprint, lower weight, and safe, maintenance-free operation. Are you ready to mobilize and go lithium?

See more options for lithium batteries at our website or contact us at (86)755-2562 9920 to help you select the right lithium batteries for your specific needs.



Lithium-ion polymer batteries are widely used due to their long life and high capacity. However, there are some issues that can arise, such as swelling, unsatisfactory safety performance, and accelerated cycle attenuation.

This article will primarily focus on battery swelling and its causes, which can be divided into two categories: the first is a result of a change in thickness of the electrode, and the other is a result of the gas produced by the oxidation and decomposition of electrolytes.

The change in thickness of the electrode pole piece

When a lithium battery is used, the thickness of the electrode pole pieces, especially the graphite negative electrodes, will change to a certain extent.

Lithium batteries are prone to swelling after high-temperature storage and circulation, and the thickness growth rate is about 6% to 20%. Of this, the expansion rate of the positive electrode is only 4%, the negative electrodes is more than 20%.

The fundamental reason for the increase in the thickness of the lithium battery pole piece is due to the nature of graphite. The negative electrode graphite forms LiCx (LiC24, LiC12, LiC6, etc.) when lithium is inserted, and the lattice spacing changes, resulting in microscopic internal stress and an expansion of the negative electrode.

the schematic diagram of the structure change of the graphite anode plate in the process of placement, charge and discharge.
The figure is the schematic diagram of the structure change of the graphite anode plate in the process of placement, charge, and discharge.

The expansion of graphite negative electrodes is mainly caused by irreversible expansion after lithium insertion. This part of the expansion is mainly related to the particle size, the adhesive, and the structure of the pole piece. The expansion of the negative electrode causes the core to deform, which in turn causes the following: a cavity between the electrode and the diaphragm, micro-cracks in the negative electrode particles, breaking and reorganizing of the solid electrolyte interface (SEI) membrane, the consummation of electrolytes, and deterioration of the cycle performance.

There are many factors that affect the thickness of the negative pole piece although the properties of the adhesive and the structural parameters of the pole piece are the two most important reasons.

The commonly used bonding agent for graphite negative electrodes is SBR. Different bonding agents have different elastic modulus and mechanical strength and have different effects on the thickness of the pole piece. The rolling force after the pole piece is coated also affects the thickness of the negative pole piece in battery use.

When the amount of SBR added is inconsistent, the pressure on the pole piece during rolling will be different. Different pressures will cause a certain difference in the residual stress generated by the pole piece. The higher the pressure, the greater the residual stress, which leads to physical storage expansion, a full electric state, and an increase in the expansion rate of the empty electric state.

The expansion of the anode leads to the deformation of the coil core, which affects the lithium intercalation degree and Li + diffusion rate of the negative electrode, thus seriously affecting the cycle performance of the battery.

Bloating caused by lithium battery gas production

The gas produced in the battery is another important cause of battery swelling. Dependent on whether the battery is in a normal temperature cycle, high-temperature cycle, or high-temperature shelving, it will produce different degrees of swelling and gas production.

According to the current research results, cell bloating is essentially caused by the decomposition of electrolytes. There are two cases of electrolyte decomposition: one is that there are impurities in the electrolyte, such as moisture and metal impurities, which cause the electrolyte to decompose and produce gas. The other is that the electrochemical window of the electrolyte is too low, which causes decomposition during the charging process.

After a lithium battery is assembled, a small amount of gas is generated during the pre-formation process. These gases are inevitable and are also the source of irreversible capacity loss of the battery.

During the first charging and discharging process, the electrons from the external circuit to the negative electrode react with the electrolyte on the surface of the negative electrode to generate the gas. During this process, the SEI is formed on the surface of the graphite negative electrode. As the thickness of the SEI increases, electrons cannot penetrate and inhibit the continuous oxidation and decomposition of the electrolyte.

When a battery is used, the internal gas production gradually increases due to the presence of impurities in the electrolyte or excessive moisture in the battery. These impurities in the electrolytes need to be carefully removed. Inadequate moisture control may be caused by the electrolyte itself, improper battery packaging, moisture, or damage to the corners. Any overcharge and over-discharge, abuse, and internal short-circuiting will also accelerate the gas production rate of the battery and cause battery failure.

In different systems, the degree of battery swelling is different.

For instance, in the graphite anode system battery, the main causes of gas swelling are the SEI film formation, excessive moisture in the cell, abnormal chemical conversion process, poor packaging, etc.

In the lithium titanate anode system, battery swelling is more serious. In addition to the impurities and moisture in the electrolyte, lithium titanate cannot form an SEI film on its surface like a graphite-anode system battery to inhibit its reaction to the electrolyte.



Safety is a full-fledged design feature with lithium batteries, and for good reason. As we’ve all seen, the chemistry and energy density that allows lithium-ion batteries to work so well also makes them flammable, so when the batteries malfunction, they often make a spectacular and dangerous mess.

All lithium chemistries are not created equal. In fact, most American consumers – electronic enthusiasts aside – are only familiar with a limited range of lithium solutions. The most common versions are built from cobalt oxide, manganese oxide and nickel oxide formulations.

First, let’s take a step back in time. Lithium-ion batteries are a much newer innovation and have only been around for the last 25 years. Over this time, lithium technologies have increased in popularity as they have proven to be valuable in powering smaller electronics – like laptops and cell phones. But as you may recall from several news stories over recent years, lithium-ion batteries also gained a reputation for catching fire. Until recent years, this was one of the main reasons lithium wasn’t commonly used to create large battery banks.

But then came along lithium iron phosphate (LiFePO4). This newer type of lithium solution was inherently non-combustible while allowing for slightly lower energy density. LiFePO4 batteries were not only safer, they had many advantages over other lithium chemistries, particularly for high power applications, such as renewable energy.

Before we dive into the safety features of lithium iron phosphate, let’s refresh ourselves on how lithium battery malfunctions happen in the first place.

Lithium-ion batteries explode when battery’s full charge is released instantly, or when the liquid chemicals mix with foreign contaminants and ignite. This typically happens in three ways: physical damage, overcharging or electrolyte breakdown.

For example, if the internal separator or charging-circuitry is damaged or malfunctions, then there are no safety barriers to keep the electrolytes from merging and causing an explosive chemical reaction, which then ruptures the battery packaging, combines the chemical slurry with oxygen and instantly ignites all of the components.

There are a few other ways lithium batteries can explode or catch on fire, but thermal runaway scenarios like these are the most common. Common is a relative term though, because lithium-ion batteries power most rechargeable products on the market, and it’s pretty rare for large-scale recalls or safety scares to happen.

Although lithium iron phosphate (LiFePO4) batteries aren’t exactly new, they’re just now picking up traction in Global commercial markets. Here’s a quick breakdown on what makes LiFePO4 batteries safer than other lithium battery solutions.

LiFePO4 batteries are best known for their strong safety profile, the result of extremely stable chemistry. Phosphate-based batteries offer superior chemical and mechanical structure that does not overheat to unsafe levels. Thus, providing an increase in safety over lithium-ion batteries made with other cathode materials.

This is because the charged and uncharged states of LiFePO4 are physically similar and highly robust, which lets the ions remain stable during the oxygen flux that happens alongside charge cycles or possible malfunctions. Overall, the iron phosphate-oxide bond is stronger than the cobalt-oxide bond, so when the battery is overcharged or subject to physical damage then the phosphate-oxide bond remains structurally stable; whereas in other lithium chemistries the bonds begin breaking down and releasing excessive heat, which eventually leads to thermal runaway.

Lithium phosphate cells are incombustible, which is an important feature in the event of mishandling during charging or discharging. They can also withstand harsh conditions, be it freezing cold, scorching heat or rough terrain.

When subjected to hazardous events, such as collision or short-circuiting, they won’t explode or catch fire, significantly reducing any chance of harm. If you’re selecting a lithium battery and anticipate use in hazardous or unstable environments, LiFePO4 is likely your best choice.

Most LiFePO4 batteries also come with a Battery Management System (BMS) that have many extra safety features including; over-current, over-voltage, under-voltage and over-temperature protection and the cells come in an explosion-proof stainless steel casing.

It’s also worth mentioning, LiFePO4 batteries are non-toxic, non-contaminating and contain no rare earth metals, making them an environmentally conscious choice. Lead-acid and nickel oxide lithium batteries carry significant environmental risk (especially lead acid, as internal chemicals degrade structure over team and eventually cause leakage). Compared to lead-acid and other lithium batteries, lithium iron phosphate batteries offer significant advantages, including improved discharge and charge efficiency, longer life span and the ability to deep cycle while maintaining performance. LiFePO4 batteries often come with a higher price tag, but a much better cost over life of the product, minimal maintenance and infrequent replacement makes them a worthwhile investment and a safer long-term solution.

Portable Power Supply

What is a Portable Power Station?

Portable Power Supply

As energy-dense lithium battery technology has advanced over the last 10 years, portable power stations have emerged as a useful solution for off-grid power. A portable power station is an easily transportable lithium battery that combines a built-in battery gauge, an inverter with AC outlet, and multiple DC outlets to provide power for common devices while you’re off the grid.

All electronic devices use either AC or DC electricity. An alternating current (AC) is the more commonly recognized type of electricity. Most household appliances, including air conditioning, microwaves, refrigerators, and hair dryers, run off AC. Less commonly recognized than AC, direct current (DC) is used in devices that have a battery as their power source. These include cell phones, laptops, portable speakers, and cameras.

If you were to purchase a battery by itself it would not be useful to power all your devices. Power stations are useful because they merge an inverter to power AC devices (standard two or three-prong US wall socket type) with different connectors to power DC devices all in one unit. Some familiar DC outlet types include USB-A, USB-C, barrel jacks, and 12V car power sockets (also known as cigarette lighter sockets). Good portable power stations include not only a standard charger that plugs into the wall at home, but also allow for charging from a solar panel.

Portable Power Station

Advantages of a Portable Power Station

Whether you need power when camping, fishing, tailgating, on the job site, or in an emergency, a portable power station can provide electricity when and where you need it. When looking at the advantages of a portable power station, a comparison must be made to their alternative, which is a fossil fuel generator. Although generators provide an endless amount of power as long as you have the fuel, they are noisy, emit dangerous greenhouse gases (carbon monoxide and carbon dioxide), and require regular running and maintenance, including oil changes, cleaning air filters and spark arrestors, and potentially cleaning out the carburetor when it gets clogged by dirty fuel.

Conversely, portable power stations do not require any maintenance besides discharging and recharging at least once every six months. They are silent and can be used indoors without fear of asphyxia. Despite their finite capacity, their capacity limitations can be overcome by planning for and purchasing a power station with enough watt-hours in reserve to get you through your intended adventure and/or supplementing capacity with a solar panel.

Depending on the continuous watt rating and capacity, a portable power station can be used to power almost any device for as long as you want. You can calculate your power needs, size your battery bank and determine your solar requirements here.

Himax’s Portable Power Station

RELiON Outlaw 1072S运行时

We currently offer the H-1000w, which is a 1000-watt continuous 2000-watt peak, 921-watt hour portable power supply, which is capable of charging through a solar panel (150-watt max). The Outlaw is powered by LiFePO4 cells capable of 2,000-lifetime cycles at 80% depth of discharge with proper care. The H-1000w can power most creature comforts you would want while camping or tailgating, or if your power went out at home for an extended period.

12V 100AH

Want to know more about LiPo charging? Here we will present a few data that will be involved when charging a LiPo battery to help you better understand the charging of LiPo batteries.

LiPo battery charging voltage

The highest voltage of LiPo battery charging, I believe that the majority of mold friends can know this common sense.4.20V is the highest voltage of LiPo batteries, but with the development and improvement of technology, most of the current manufacturers LiPo batteries can safely reach 4.25V, and some top technology manufacturers can achieve 4.30V, the voltage of 4.30V is the highest voltage of the current technology. Because the charger for the polymer battery of our RC model is basically a set voltage of 4.20V, it can be charged according to 4.20V. If you use other methods to increase the maximum charging voltage (such as 4.35V), it will cause irreversible damage to the battery.

LiPo battery charging mode

All LiPo batteries are charged in constant current and constant voltage to meet the requirements of fullness.

lipo battery charging

First of all, to explain to you what is called constant current and constant voltage charging. As the name implies, it is charged in a constant voltage after constant current. For large household B6 or A6 or other chargers to charge the RC battery, you should first set the two parameters of charging current and S number. In fact, this is to set the constant current value and the constant voltage value of the constant current and constant voltage mode.

For example, the parameter set to “5A, 6S”, after starting the charger, under the control of the program, the charger will charge the battery with 5A current in the early stage, while sampling and monitoring the battery voltage, when the battery voltage is close to or arrives 4.2V, the charger will gradually reduce the charging current, until the voltage is kept at 4.2V and the current is less than the preset value, the charger is considered to be fully charged and stops automatically.

So what is the default value mentioned above? According to our actual measurement data of some chargers, this preset value is generally divided into two situations.

  1. Some manufacturers set the preset value as 10% of the charging current. For example, if you choose 5A charging, when the current is lower than 500MA after constant voltage, the program determines that the preset value has been reached.
  2. Fixed values. Some chargers, like the A6, have a preset charging value of 100MA, while others have a simple charging setting of 20MA. If you use your own 4.2v power supply, you can make the charger smaller without limit.

This indicates that the smaller the present value is, the more the battery will be able to charge up to nearly 4.2v, the higher the battery will be fully charged.


LiPo batteries charging current 

Talk about the charging current of the LiPo battery. Battery charging is actually a process of converting electrical energy into chemical energy, which is a chemical reaction. As we all learned in school, the intensity of a chemical reaction is strongly related to temperature and pressure. The speed of charge and discharge is actually the speed of chemical reaction. Conditional RC enthusiasts can find the relevant substances to do the experiment by yourself. The reaction speed is quite slow.

According to the experimental data and theoretical proof, lithium battery charging current within 1C without any damage to the battery. More than 2C current will cause a slight drop in capacity, while 5C charging will have a significant decrease in capacity. The reduction in capacity is mainly due to the damage caused by the crystallization of materials inside the battery, but after dozens of times, you will know that the battery capacity decreases and this is irreversible. Therefore, it is suggested that the model friend honestly control the charging current within 1C, which is better for the battery.

As the largest countries of lithium polymer battery all over the world, China accounts for more than one-third of global production. Currently, strong demand for materials spreads over more than 100 lithium battery manufacturers, said to their urgent plans for the mass output increase within 2 years.

lithium polymer battery characteristics

Compared to most lithium polymer batteries, the lithium polymer battery is with characteristics as below:

1. No battery leakage problem

The battery does not contain a liquid electrolyte, using a colloidal solid.

2. Thin battery

Thin battery with a capacity of 3.6V400mAh, its thickness can be as thin as 0.45mm. Various Shapes

3. various shapes

The battery can be designed in various shapes: round, D, arc, etc.


4. Bending deformation

The battery can be bending deformation: polymer battery maximum bending around 90 °.

5. Single high voltage

liquid electrolyte battery can only get high voltage by several batteries in series, while polymer battery can be made into multi-layer combination in a single battery to achieve high voltage because there is no liquid itself.

6. High capacity

The capacity will be twice that of a lithium-ion battery of the same size.

Lithium polymer battery structure

No matter what kind of lithium polymer battery it is, the basic structure is a positive plate, negative plate, positive and negative current collector, diaphragm paper, shell and sealing ring, cover plate, etc.

1. Cathode material

Currently, the cathode material used is LiCoO2, LiMn2O4, LiFePO4, and doping modification systems of these materials. Cathode electrode sheet current collector is made of aluminum foil.

Battery dust

2. Anode material

various types of graphite. Anode material electrode sheet current collector is made of copper foil.

3. Electrolyte

At present, the lithium salt electrolyte is preferably to be LiPF6, but the price is relatively expensive; the other options like LiAsF6 with high toxicity, LiClO4 with strong oxidizing property and the organic solvent including DEC, DMC, DME, etc.

4. Diaphragm paper

The diaphragm adopts microporous polypropylene film or the special treated for low-density polyethylene film.

In addition, the shell, the cap, the seal and so on are changed depending on the shape of the battery along with the consideration of safety devices, protection circuits, etc.

The main processes in the lithium polymer battery manufacturing process are batching (pulping), Battery slices formation (coating), assembly and formation.

Among the above, the cathode electrode slurry is composed of cathode electrode active material lithium cobaltate (LiCoO 2 ), conductive agent (carbon powder, graphite, etc.), and binder PVdF (N-dimethyl pyrrolidone). Also, the anode electrode slurry is composed of the anode active material carbon or graphite and the binder PVdF(N-dimethyl arsenic alone).

The substrate of the cathode electrode is an aluminum foil and the substrate of the anode electrode is a copper foil.

The electrolyte to be injected is a multi-element organic substance such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl ester (DMC), ethyl methyl carbonate (EMC), propylene carbonate (PC). ), dimethyl glycol (DME), tetrahydrofuran (THF), and so on.

battery manufacturing equipment

Since the coating & battery slices formation process generally uses mechanical wet hanging and drying, dust is less likely to be generated. But dust is generated during slicing and winding assembly. The main pollutant is the organic waste gas produced in the drying process.

Charging Lithium Iron Phosphate Batteries

Change can be daunting, even when switching from a lead-acid battery to a lithium iron phosphate battery. We all know properly charging your battery is critical and directly impacts the performance and life of the battery. Let’s take a look at how to charge your LiFePO4 battery to maximize your investment.

Charging Lithium Iron Phosphate Batteries

Charging Conditions

Much like your cell phone, you can charge your lithium iron phosphate batteries whenever you want. Obviously, if you let them drain completely, you won’t be able to use them until they get some charge. The key thing to note is that unlike lead-acid batteries, lithium iron phosphate batteries do not get damaged if they are left in a partial state of charge, so you don’t have to stress about getting them charged immediately after use. And they don’t have a memory effect, so you don’t have to drain them completely before charging.

LiFePO4 batteries can safely charge at temperatures between -4°F – 131°F (0°C – 55°C), however, we recommend charging in temperatures above 32°F (0°C). If you do charge below freezing temperatures, you must make sure the charge current is 5-10% of the capacity of the battery.

How to Charge a Lithium Iron Phosphate Battery

The ideal way to charge a LiFePO4 battery is with a lithium iron phosphate battery charger, as it will be programmed with the appropriate voltage limits. Most lead-acid battery chargers will do the job just fine. AGM and GEL charge profiles typically fall within the voltage limits of a lithium iron phosphate battery. Wet lead-acid battery chargers tend to have a higher voltage limit, which may cause the Battery Management System (BMS) to go into protection mode. This won’t harm the battery, however, it may cause fault codes on the charger display.

Charging Batteries in Parallel Best Practices

When connecting your lithium batteries in parallel, it is best to charge each battery individually before making the parallel connection(s). If you have a voltmeter, check the voltage a couple hours after the charge is complete and make sure they are within 50mV (0.05V) of each other before paralleling them. This will minimize the chance of imbalance between the batteries and, ultimately, maximize the performance of the system. Over time, if you notice the capacity of your battery bank has decreased, disconnect the parallel connections and charge each battery individually, then reconnect.

Charging Batteries in Series Best Practices

Connecting lithium batteries in series is much like connecting them in parallel, it is best to charge each battery up individually and check the voltage and ensure they are within 50mV (0.05V) of each other before making the series connections.

It is highly recommended to charge lithium batteries in series with a multi-bank charger. This means each battery is charged at the same time but completely independent of each other. In some applications this is not practical, which is why Himax offers 24V and 48V batteries to reduce the need for multiple batteries in series.

What About During Storage?

Lithium iron phosphate batteries are so much easier to store than lead-acid batteries. For short-term storage of 3-6 months, you don’t have to do a thing. Ideally, leave them at around 50% state of charge before storing. For long-term storage, it is best to store them at a 50% state of charge and then cycle them by discharging them, recharging them and then partially discharging them to approximately 50%, every 6-12 months.

The Key Differences Between Lithium Iron Phosphate and Lead-Acid Batteries When It Comes to Charging

Lithium batteries can charge at a much higher current and they charge more efficiently than lead-acid, which means they can be charged faster. Lithium batteries do not need to be charged if they are partially discharged. Unlike lead-acid batteries, which when left in a partial state of charge will sulfate, drastically reducing performance and life.

lithium batteries come with an internal Battery Management System (BMS) that protects the battery from being over-charged, whereas lead-acid batteries can be over-charged, increasing the rate of grid corrosion and shortening battery life.

For more details on charging your Himax lithium batteries, contact us if you have any questions.