18650 lithium ion battery pack is the most popular AGM replacement battery for solar street light, like 18650 9.6V 2500mAh 18650 battery pack, 11.1V 2600mAh 18650 battery pack.

What are the advantages of using lithium-ion batteries for solar street lights compared to lead-acid batteries?


  1. Lithium-ion batteries are small in size, light in weight and easy to transport.

Compared with lithium-ion batteries and lead-acid batteries used in solar street lights of the same power, the weight and volume of lithium-ion batteries are about one-third that of lead-acid batteries. In this way, transportation is easier and transportation costs will naturally decrease.


  1. Lithium-ion batteries have high energy density and longer service life.

The greater the energy density of a battery, the more power it can store per unit weight or volume. There are many factors that affect the service life of lithium-ion batteries, and energy density is one of the very important internal factors.
14.8V 4Ah Li Ion Customized Battery Packs- 18650 Lithium Ion Battery Pack


  1. Custom lithium battery pack are more convenient to install.

When installing traditional solar street lights, a battery pit must be reserved, and a buried box is used to place the battery in and seal it. Solar street lights with lithium battery systems are more convenient to install. They can be suspended or built-in, and the lithium-ion battery can be installed directly on the bracket.


  1. Lithium battery solar street lights are easy to maintain.

When repairing lithium-ion solar street lights, just remove the battery from the light pole or battery panel. When repairing traditional solar street lights, you have to dig out the batteries buried underground, which is more troublesome to operate.

Contact Himax now to unlock your exclusive battery customization options, Himax offers a wide range of options and flexible customization services to meet the needs of different users.
If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com

The constantly growing demand for energy storage is driving research and development in battery technology. The sodium-ion battery is a reliable and affordable replacement for li ion customized battery packs. The easy accessibility and availability of sodium make sodium-ion batteries more attractive and competitive.

By using elements that are abundant in the Earth and adjusting the phase growth of the layered oxide cathode, a long-cycle, high-energy sodium-ion battery has now been developed and validated at 165 Wh/kg with the collaboration of Dr. Qingsong Wang, junior group leader at the Chair of Inorganic Active Materials for Electrochemical Energy Storage.

“Our result shows that sodium-ion batteries are even more cost-effective and sustainable on an industrial scale than conventional li ion customized battery packs, which are based on iron phosphate chemistry,” says Wang.

Li Ion Customized Battery Packs

In the study, which has been published in Nature Energy by a team of scientists from the Universities of Bayreuth (Germany), Xiamen (China), Shenzhen (China), the Argon National Laboratory (U.S.) and the Physics Institute of the Chinese Academy of Sciences in Beijing (China), it is shown that the intergrowth structure can be adapted by controlling the charge depth. This allows a prismatic-type stacking state to be inserted evenly between the octahedral-type stacking states.


This helps to avoid neighboring octahedral-type stacking faults. Octahedral-type and prismatic-type refer to the geometric arrangement of atoms or ions in a crystal lattice. Octahedral-type means that the atoms or ions in a crystal are arranged in an arrangement that resembles an octahedron. Prismatic-type refers to an arrangement that resembles a prism.

“Our research is to analyze the anionic oxygen redox reaction as an energy enhancer of the layered oxide for the sodium ion cathode,” says Wang.

“It is important to develop a strategy to make this reaction reversible and stable. In the long term, the results of our research can make mid-range electric vehicles more affordable, as the batteries for them can then be produced more cheaply and with a longer service life.”

More information: Xiaotong Wang et al, Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox, Nature Energy (2024). DOI: 10.1038/s41560-023-01425-2

Journal information: Nature Energy



Overcharging refers to the process of continuing to apply current to a battery after it has reached its charging capacity limit, causing the battery to continue accepting a charge.

In general, 5V lithium-ion batteries are relatively safe under normal charging conditions because modern electronic devices are typically equipped with charging management circuits that can monitor and control the battery’s charging status to prevent overcharging. However, occasional instances of overcharging may occur.

What are the possible phenomena when a 5V lithium-ion battery is overcharged?



Overcharging can lead to the battery overheating, accelerating internal chemical reactions, aging the battery, and compromising its performance. Additionally, overheating may result in safety issues, such as the expansion or even rupture of the battery casing.


Gas Generation

In extreme cases, overcharging may cause the generation of gas inside the battery, leading to the expansion or rupture of the battery casing. Gas generation may also react with components in the electrolyte, further damaging the battery.


Loss of Electrolyte

Electrolyte is essential for the normal operation of the battery, and its loss can result in decreased battery performance, reduced capacity, and even battery failure.


Reduced Battery Lifespan

Overcharging accelerates the aging process of the battery, leading to a shortened lifespan. The cycle life of the battery (the number of charge-discharge cycles) may also significantly decrease.


To avoid overcharging a 5V battery, consider the following practices:

Use Original or Compliant Chargers: Use chargers provided by the original manufacturer or those that comply with relevant standards. This ensures that the charger is designed to meet the battery specifications and incorporates appropriate charging management systems.

Use Appropriate Power Adapters: Ensure that the selected power adapter’s output voltage and current match the battery specifications. Avoid using chargers from unknown sources or those that are not compliant.

Avoid Using Damaged Charging Devices: Refrain from using damaged or broken charging devices, as this may cause unstable current and voltage, increasing the risk of overcharging.

Follow User Instructions: Read and follow the user instructions for both the device and the battery, understanding the maximum allowable charging voltage and current. Ensure compliance with the instructions during use.

Avoid Prolonged Charging: When the battery is fully charged, try to avoid leaving the device plugged in for an extended period. Although modern devices often have charging management systems, it’s still advisable to prevent prolonged charging.

Regularly Check Device and Battery Status: Periodically check the status of the device and the battery to ensure there are no obvious signs of damage or abnormalities. If issues are detected, promptly replace or repair the device.

Use Batteries with Charging Protection: Some batteries come with built-in protection circuits to prevent overcharging. When purchasing batteries, consider selecting models equipped with charging protection features.


Overall, effective battery management is crucial to ensure the safe operation of your 5v batteries and devices, if you are looking for high quality, reliable 5v battery management solutions, please feel free to contact us.

Himax - 4/5sc Sub C Ni-Mh

As we all know, many electric curtains on the market are battery-driven. As the market demand for electric curtains continues to expand, the demand for 18650 battery pack are also increasing. The batteries for electric curtains are very similar in appearance and size.

Currently, the batteries mainly used for electric curtains include 18650 lithium ion battery, 18650 lifepo4 battery, 18650 sodium ion battery, Ni-MH battery

Li ion customized battery packs, 18650 3S1P, 11.1V 2200mAh, 2600mAh, 2800mAh, 3000mAh, etc.

LiFePO4 lithium-ion battery, 18650 4S2P, 12.8V 2000mAh, 18650 12.8V 3000mAh, etc.

Sodium-ion battery pack, 18650 4S2P, 12.4V 2600mAh.

Himax - Battery Ni-Mh 2/3AA 1.2V and li-ion battery pack manufacturing

At present, sodium-ion battery is still in its infancy. Some customers have begun testing samples, and there should be greater feedback in the market in recent years. Sodium-ion batteries are also a new trend in the future development of the battery industry.

Ni-MH battery pack 12V, 10S1P 12V 2500mAh.

This type of battery has mature technology, various models to choose from, and the price is not expensive.

HIMAX makes different type of rechargeable battery for electric curtains.

Himax has now also begun to provide sodium-ion battery solutions to our customers to meet the needs of industry development. We have more than 10 years experience and we we got as high as 99% of satisfaction on quality in these years.

Your inquiries are warmly welcome.

Contact Himax now to unlock your exclusive battery customization options, Himax offers a wide range of options and flexible customization services to meet the needs of different users.
If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com

In the race to develop the most efficient and sustainable energy storage technology, two leading contenders have emerged: sodium ion batteries and li ion customized battery packs. While lithium ion batteries currently hold the market share, sodium ion batteries offer several advantages that could disrupt the energy storage landscape in the coming years.


Li ion customized battery packs, which are widely used in consumer electronics, electric vehicles, and grid-scale energy storage systems, have a long track record of performance and reliability. Lithium ion batteries store energy in the form of lithium ions, which can travel through an electrolyte to power the battery. They have a high energy density, meaning they can store a large amount of energy in a small space. Lithium ion batteries also have a relatively long lifespan, making them a cost-effective choice for many applications.


However, lithium is a rare metal, making li ion customized battery packs expensive and environmentally unfriendly to produce. The extraction and refinement of lithium require significant resources and can have negative impacts on the environment. Furthermore, lithium ion batteries may not be the best solution for large-scale grid storage or for widespread use in electric vehicles due to their limited supply and high cost.


Sodium ion batteries, on the other hand, offer a more sustainable and cost-effective alternative to lithium ion batteries. Sodium is abundant and widely distributed, making it a less expensive and more environmentally friendly material for battery production. Sodium ion batteries work similarly to lithium ion batteries, storing energy in the form of sodium ions that travel through an electrolyte. They have a high specific capacity, meaning they can store more energy per unit weight compared to lithium ion batteries.

4000mAh batteries-Li Ion Customized Battery Packs

Another advantage of sodium ion batteries is their wide temperature range. They can operate in a variety of climates and conditions, making them suitable for use in extreme environments or in remote locations where temperature control is challenging. This flexibility could make sodium ion batteries a good choice for grid-scale storage in areas with variable climates or limited infrastructure.


Despite their advantages, sodium ion batteries still face challenges before they can compete with lithium ion batteries on the market. Researchers are working to improve the performance, lifespan, and cost-effectiveness of sodium ion batteries to make them viable alternatives. Development efforts are focused on improving the electrode materials, developing new electrolytes, and optimizing battery designs to improve energy density and charge/discharge rates.


The future of energy storage is uncertain as more research is conducted on both sodium ion batteries and li ion customized battery packs. It remains to be seen which technology will ultimately prevail. However, as the race continues, it’s clear that the development of sustainable and cost-effective energy storage solutions is critical for meeting the growing demand for clean and efficient energy worldwide.

Himax All-Energy Australia Himax

In today’s fast-paced world, the demand for efficient and sustainable energy storage solutions is constantly on the rise. One of the most promising technologies in this field is the Sodium Na Ion Battery Pack. Let’s explore the benefits of this advanced energy storage solution and understand why it’s revolutionizing the way we power our devices and vehicles.

High Energy Density: Sodium Na Ion Battery Packs offer exceptionally high energy density, meaning they can store more energy in a smaller space. This makes them an excellent choice for devices that require compact yet powerful energy sources, such as electric vehicles and portable electronic devices.

Extended Lifespan: With proper care and use, Sodium Na Ion Battery Packs can last for hundreds of charge-discharge cycles, significantly longer than many other types of batteries. This ensures longer-lasting performance and reduces the need for frequent replacements, saving time and money.

Fast Charging: Sodium Na Ion Battery Packs can be charged quickly, significantly reducing charging times compared to other batteries. This is particularly beneficial for electric vehicles, where quick charging can enhance the driving experience and reduce the time spent stationary charging.

Future Batteries(Article illustrations)- Na Ion Battery Pack


Environmentally Friendly: Unlike some traditional batteries that contain harmful substances, Sodium Na Ion Battery Packs are environmentally friendly. They are safe to dispose of and are composed of materials that are easily recyclable, making them more sustainable and eco-friendly.

Scalability: Sodium Na Ion Battery Packs can be scaled up or down depending on the application, providing flexibility in terms of power and capacity requirements. This allows for efficient customization to fit the needs of various devices and systems.

Durability: The robust design of Sodium Na Ion Battery Packs makes them highly durable and resilient to harsh conditions. They can withstand extreme temperatures, vibrations, and other challenging environmental factors, making them suitable for use in various industrial, automotive, and aerospace applications.

In conclusion, the Sodium Na Ion Battery Pack offers a range of remarkable benefits that make it a highly suitable energy storage solution for a variety of applications. Its high energy density, extended lifespan, fast charging capabilities, environmental friendliness, scalability, and durability provide unprecedented performance in powering our devices and vehicles efficiently and sustainably. As the demand for clean and efficient energy storage solutions continues to grow, the Sodium Na Ion Battery Pack is set to play a pivotal role in meeting these demands and shaping a brighter energy future.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
LiTypes of Lithium-ion

A research team has successfully constructed a glassy Li-ion conduction network and developed amorphous tantalum chloride solid electrolytes (SEs) with high li ion customized battery packs conductivity.

The research results were published in the Journal of the American Chemical Society.

The study shows that compared with ceramic SEs, amorphous SEs distinguish themselves by their inherent unique glassy networks for intimate solid-solid contact and extraordinary li ion customized battery packs conduction percolation.

In addition, amorphous SEs are conducive to fast li ion customized battery packs conduction and are promising for realizing the effective use of high-capacity cathodes and stable cycling; thus, they significantly increase the energy density of all-solid-state lithium batteries (ASSLBs).

However, due to the low areal capacity of the thin-film cathode and the poor room-temperature ionic conductivity, the amorphous Li-ion conduction phosphorous oxynitride (Li1.9PO3.3N0.5, LiPON) is inferior to the current commercialized Li-ion batteries in terms of the energy/power density.

To overcome this challenge, it is necessary to develop amorphous SEs with high Li-ion conductivity and ideal chemical (or electrochemical) stability. It has been revealed that crystalline halides, compounds in which the halogens are negatively valenced, including fluorides, chlorides, bromides, and iodides, are promising to realize high-energy-density ASSLBs for their high voltage stability and high ionic conductivity. However, there are still few studies on developing amorphous chloride SEs.

Researchers proposed a new class of amorphous chloride SEs with high Li-ion conductivity, demonstrating excellent compatibility for high-nickel cathodes, and realized a high-energy-density ASSLB with a wide range of temperatures and stable cycling.

Himax-home-page-design-product-category-1-4-1-Li Ion Customized Battery Packs

The researchers determined the structural features of the LiTaCl6 amorphous matrix by employing random surface walking global optimization combined with a global neural network potential (SSW-NN) function for a full-situ energy surface search and one-dimensional solid-state nuclear magnetic resonance lithium spectroscopy for the decoupling of chemical environments, X-ray absorption fine-structure fitting, and low-temperature transmission electron microscopy for the microstructural characterization of the matrix.

Based on the flexibility of its component design, a series of high-performance and cost-effective Li-ion composite solid electrolyte materials with the highest room-temperature Li-ion conductivity up to 7 mS cm-1 were further prepared, which meets the practical application requirements of high-magnification ASSLBs.

Furthermore, researchers verified the applicability of the ASSLBs constructed based on amorphous chloride over a wide temperature range: i.e., it can achieve a high rate (3.4 C) close to 10,000 cycles of stable operation in a freezing environment of -10°C. The component flexibility, fast ionic conductivity, and excellent chemical and electrochemical stability exhibited by the amorphous chloride SEs provide new ideas for further designing new SEs and constructing high-ratio ASSLBs.

This breakthrough extends a series of high-performance composite SEs, overcomes the limitations of the structure and component design of traditional crystalline SEs, and paves the way for realizing high-nickel cathodes with high performance for ASSLBs.

The research team was led by Prof. Yao Hongbin from the University of Science and Technology of China (USTC), in collaboration with Prof. Shang Cheng from Fudan University and Prof. Tao Xinyong at Zhejiang University of Technology.

More information: Feng Li et al, Amorphous Chloride Solid Electrolytes with High Li-Ion Conductivity for Stable Cycling of All-Solid-State High-Nickel Cathodes, Journal of the American Chemical Society (2023). DOI: 10.1021/jacs.3c10602

Journal information: Journal of the American Chemical Society

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com

Keywords: li ion customized battery packs, battery longevity, battery care, charging, storage

This article provides valuable insights into enhancing the lifespan of li ion customized battery packs. Covering key factors like charging, storage conditions, and proper maintenance, it equips readers with the knowledge to ensure maximum performance and longevity of their batteries.


Li ion customized battery packs have become an integral part of our daily lives, powering everything from smartphones to electric vehicles. However, ensuring their longevity can be a challenge. Here’s a guide to increasing the lifespan of li ion customized battery packs.

18650 Lithium Ion Battery Pack-Li Ion Customized Battery Packs

1.Proper Charging:

  • Charging the battery to full capacity and draining it completely can shorten its lifespan. It’s recommended to charge the battery when it reaches about 40-80% discharge level to minimize damage to the battery.
  • Using a high-quality charger that adheres to battery manufacturer’s recommended charging parameters is essential for maintaining battery health.
  • Avoid charging or discharging the battery at high temperatures as this can damage the battery’s internal structure, leading to premature aging.

2.Storage Conditions:

  • When not in use, li ion customized battery packs should be stored in a cool, dry place. Extreme temperatures can affect battery performance and longevity.
  • It’s best to store the battery at about 50% charge level to prevent damage caused by deep discharging or overcharging.
  • Regularly charging and discharging the battery even when not in use helps maintain battery health.

3.Proper Maintenance:

  • Regularly cleaning the battery contacts with a lint-free cloth can help prevent corrosion and ensure efficient charging and discharging.
  • Inspecting for cracks, tears, or other damage on the battery casing and ensuring it’s securely fastened can prevent leaks and failures.
  • It’s essential to use only recommended chargers and not to attempt repairs or modifications on the battery as this can lead to damage or malfunction.

By following these guidelines, you can ensure that your lithium-ion batteries perform at their best for longer, extending their lifespan and providing reliable power throughout their service life. Remember, proper care and maintenance are key to achieving maximum performance from your lithium-ion batteries.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
portable device decorate img

5V batteries are widely employed in various portable devices, characterized by a moderate voltage, compact size, light weight, and relatively high power output, making them an ideal energy source for many mobile devices.

Here are some common portable devices that typically utilize 5V batteries:

  1. Smartphones: The voltage level of 5V batteries is relatively moderate, allowing them to provide sufficient power for smartphones while maintaining a reasonable battery life. This ensures that smartphones can maintain good battery performance over an entire charging cycle.
  2. Tablets: Designed for lightness and portability, tablets often incorporate 5V batteries, offering a balanced power management solution to meet the performance requirements of tablets while maintaining a relatively long battery life. Similar to smartphones, tablets frequently use 5V batteries to support high-resolution screens and complex applications.
  3. Portable Chargers: Since most mobile devices use USB as a charging standard, and the standard voltage for USB charging is 5V, portable chargers with 5V batteries can directly support various USB charging devices, providing broader compatibility.
  4. Bluetooth Headphones and Earphones: Bluetooth headphones and earphones are typically low-power devices that don’t require high voltage to provide sufficient energy. The 5V battery voltage is moderate in this scenario, meeting the power needs of headphones and making them lightweight and easy to carry.
  5. Handheld Gaming Consoles: Designed for portability, handheld gaming consoles often use 5V batteries due to their relatively small size and lightweight, supporting extended gaming experiences.
  6. Smartwatches and Health Trackers: Many smartwatches and health trackers support USB charging with a standard voltage of 5V. By adopting 5V batteries, these devices can directly utilize standard USB charging cables, providing a convenient and universal charging method.
  7. Drones: Small and portable drones typically use 5V batteries to supply the required power for flight.
  8. Cameras and Camcorders: Some portable cameras and camcorders use 5V batteries, making them more convenient to carry and use.
  9. Handheld Electronic Devices: Including small speakers, flashlights, and mobile wireless routers, various portable electronic devices also commonly use 5V batteries.


portable Devices

When applying 5V batteries, it’s essential to consider the following aspects:

  • Compatibility: Ensure that the selected 5V battery is compatible with the device’s voltage requirements to prevent potential damage or performance degradation.
  • Quality and Reliability: Opt for high-quality and reliable brands of 5V batteries to ensure performance and safety. Low-quality batteries may pose risks such as leakage, overheating, and other safety hazards.
  • Charger Selection: Use a charger that aligns with the device’s specifications in terms of charging current and voltage. Using an incorrect charger may impact battery life and safety.
  • Charging Cycles: Avoid frequent deep discharge cycles, as this can accelerate the aging of 5V batteries. Regular charging and maintaining the battery at an appropriate charge level contribute to sustained performance.
  • Temperature Control: Avoid using or charging 5V batteries in extreme temperatures, as extreme conditions may affect battery performance and lifespan. High temperatures can lead to overheating, while low temperatures may cause a reduction in battery capacity.
  • Avoid Overdischarge and Overcharge: Prevent both full discharge and overcharging of 5V batteries. This practice helps extend the battery’s lifespan and reduce internal stress.
  • Storage Conditions: If a device will not be used for an extended period, ensure the battery is fully charged before storage and store it in a cool, dry place. Avoid storing devices and batteries in environments with high temperatures or humidity.
  • Maintenance Alerts: Some devices may provide maintenance alerts or settings related to battery care. It’s crucial to follow the manufacturer’s recommendations and perform maintenance promptly.
  • Monitoring During Charging: Keep the device nearby during charging to take timely action in case of any abnormalities. Overcharging can lead to overheating and safety issues.
  • Prevent Impact and Compression: Avoid subjecting 5V batteries to strong impacts or compression to prevent battery damage, leakage, or short circuits.

5V rechargeable batteries are a common portable power source. Through careful selection, use, and maintenance of 5V batteries, their performance can be optimized, and their lifespan extended. For more information about battery products or other advanced technological solutions, please feel free to contact us.

Himax - 18650 Battery Pack for Solar

In recent years, compared to li ion customized battery packs, sodium-ion batteries have continued to develop in the industry and are now gradually being put into use.


What are the outstanding advantages of sodium-ion batteries compared with li ion customized battery packs?

According to current industry test data analysis, sodium-ion batteries not only have better safety, but are more cold-resistant than li ion customized battery packs when encountering low temperatures of -40°C.


Sodium-ion batteries have no over-discharge characteristics, allowing sodium-ion batteries to discharge to zero volts. The energy density of sodium-ion batteries is greater than 100Wh/kg, which is comparable to lithium iron phosphate batteries. However, its cost advantage is obvious, and it is expected to replace traditional lead-acid batteries in the large-scale energy storage industry.

Himax - Solar street light battery-Li Ion Customized Battery Packs

The working principle of sodium-ion batteries is the same as that of lithium-ion batteries, and the existing production equipment of lithium ion battery companies can be directly used to produce sodium-ion batteries. Since there is basically no equipment investment, it is easy for companies to produce them as alternative batteries.


Although the energy density of sodium-ion batteries is not as high as lithium-ion batteries, due to the abundant Na resources and easy availability, and the current high price of lithium carbonate, Na-ion batteries still have very broad application prospects in the long run. It still has application prospects in some fields that do not require high energy density, such as grid energy storage, peak shaving, wind power energy storage, etc.


Himax has now also begun to provide sodium-ion battery solutions to our customers to meet the needs of industry development.


Your inquiries are warmly welcome.

Contact Himax now to unlock your exclusive battery customization options, Himax offers a wide range of options and flexible customization services to meet the needs of different users.
If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com