car-battery

The golf cart market is evolving as more and more people are taking advantage of their versatile performance. For decades, deep-cycle flooded lead-acid batteries have been the most cost effective means to power electric golf cars. With the rise of lithium batteries in many high-power applications, many are now looking into the advantages of LiFePO4 batteries in their golf cart.

While any golf cart will help you get around the course or neighborhood, you need to make sure it has enough power for the job. This is where lithium golf cart batteries come into play. They’re challenging the lead-acid battery market due to their many benefits that make them easier to maintain and more cost-effective in the long run.

Below is our breakdown of the advantages of lithium golf cart batteries over lead-acid counterparts.

48v-ev-battery

Carrying Capacity

Equipping a lithium battery into a golf cart enables the cart to significantly increase its weight-to-performance ratio. Lithium golf cart batteries are half the weight of a traditional lead-acid battery, which shaves off two-thirds of the battery weight a golf cart would normally operate with. The lighter weight means the golf cart can reach higher speeds with less effort and carry more weight without feeling sluggish to the occupants.

 

The weight-to-performance ratio difference lets the lithium-powered cart carry an additional two average-sized adults and their equipment before reaching carrying capacity. Because lithium batteries maintain the same voltage outputs regardless of the battery’s charge, the cart continues to perform after its lead-acid counterpart has fallen behind the pack. In comparison, lead acid and Absorbent Glass Mat (AGM) batteries lose voltage output and performance after 70-75 percent of the rated battery capacity is used, which negatively affects carrying capacity and compounds the issue as the day wears on.

 

No Maintenance

One of the major benefits of lithium batteries is that they require no maintenance whatsoever, whereas lead-acid batteries regularly need to be checked and maintained. This ultimately results in saved man hours and the extra costs of maintenance tools and products. The lack of lead-acid means that chemical spills are avoided and the chance of downtime on your golf car is drastically reduced.

 

Battery Charging Speed

Regardless if you’re using a lead-acid battery or a lithium battery, any electric car or golf cart faces the same flaw: they have to be charged. Charging takes time, and unless you happen to have a second cart at your disposal, that time can put you out of the game for a while. A good golf cart needs to maintain consistent power and speed on any course terrain. Lithium batteries can manage this without a problem, but a lead-acid battery will slow the cart down as its voltage dips. Plus after the charge has dissipated, it takes an average lead-acid battery roughly eight hours to recharge back to full. Whereas, lithium batteries can be recharged up to 80 percent capacity in about an hour, and reach full charge in less than three hours.

 

Plus, partially-charged lead-acid batteries sustain sulfation damage, which results in significantly reduced life. On the other hand, lithium batteries have no adverse reaction to being less than fully charged, so it’s okay to give the golf cart a pit-stop charge during lunch.

72V 200Ah

Eco-Friendly

Lithium batteries put less strain on the environment. They take significantly less time to fully charge, resulting in using less energy. They do not contain hazardous material, whereas lead-acid batteries, as the name suggests, contain lead which is harmful to the environment.

 

Battery Cycle Life

Lithium batteries last significantly longer than lead-acid batteries because the lithium chemistry increases the number of charge cycles. An average lithium battery can cycle between 2,000 and 5,000 times; whereas, an average lead-acid battery can last roughly 500 to 1,000 cycles. Although lithium batteries have a high upfront cost, compared to frequent lead-acid battery replacements, a lithium battery pays for itself over its lifetime. Not only does the investment in a lithium battery pay for itself over time, but big savings can be made in the way of reduced energy bills, maintenance costs, and possible repairs that would otherwise need to be made to heavy lead-acid golf cars. They also just perform better overall!

 

Are Lithium Golf Cart Batteries Compatible?

Golf carts designed for lead-acid batteries can see a significant performance boost by swapping the lead-acid battery to a lithium battery. However, this second wind can come at an instillation cost. Many lead-acid equipped golf carts need a retro-fit kit to operate with a lithium battery, and if the cart manufacturer doesn’t have a kit, then the cart will need modifications to operate with a lithium battery.

UN38.3 Battery

Anyone who has ever dealt with lithium batteries knows the demanding process for transportation. Lithium cells and batteries are classified as dangerous goods class 9 and thus are on a par with liquid nitrogen. The requirements for safe transport are correspondingly high.

Whether by rail, road or air, the eligibility of lithium cell or battery shipments is regulated by the transport test 38.3 of the United Nations. A shipment is only permitted if the following eight individual tests are passed.

UN38.3 Battery

1) Altitude Simulation

This test simulates the environmental conditions prevailing in the cargo hold of an aircraft at an altitude of up to 15,000 meters. The battery is exposed to an extremely low air pressure of 11.6 kilopascal for a total of six hours. The test is passed if:

 

the battery shows no loss of mass

the overpressure valve of the battery remains closed

the battery housing is free of cracks or leaks,

the voltage level of the battery differs from the initial value by a maximum of 10% after completion of the test.

2) Thermal Test

If the altitude simulation has been successfully completed, the next step is to check the behavior of the lithium battery in case of strong temperature fluctuations. This stresses the battery seals and internal electrical connections. The batteries are initially stored for at least six hours at a surrounding temperature of 72 degrees Celsius. The temperature is then lowered to -40 degrees Celsius for a further six hours. This test procedure, for which Jauch uses a specially designed thermal shock chamber, must be carried out over 10 complete cycles. Finally, the batteries are stored at room temperature for at least another twelve hours. The test is passed when all the criteria mentioned under 1) have been met.

 

3) Vibration Test

The third part of the UN 38.3 transport test puts the battery in a vibration generator, where the battery is subjected to frequencies between 7 and 200 Hertz. The test is designed for a total of three hours and simulates the typical jerking in the hold of a truck while driving. The criteria mentioned under 1) also apply in this case.

 

4) Impact Test

Just like the vibration test, the impact test also serves to prevent possible damage to the battery by rough transport. Depending on the size of the lithium battery, impacts of 150G/6mS or 50G/11mS affect the housing. Just as in the vibration test, the criteria listed under 1) apply here as well.

 

5) External Short Circuit Test

For this test, the battery is first heated from the outside to a temperature of 57 degrees Celsius before an external short-circuit is caused. As a result, the battery temperature rises, but must not exceed 170 degrees Celsius. Once the battery has cooled down to 57 degrees again, the short-circuit condition must remain for another 60 minutes. The test is only passed if neither flames, cracks nor other damage to the battery housing are detected for up to six hours afterwards.

 

6) Impact and Crush Test

This test is carried out at cell level and simulates external damage to the cells that can occur because of a strong impact, such as a traffic accident. For this purpose, depending on the cell type and shape, a stamp with a precisely defined size and press depth is pressed into the cells. Damaged in this way, an internal short-circuit can occur in the cell. The test is passed if, as with the external short-circuit test, the housing temperature does not exceed 170 degrees Celsius at any time and no signs of cracks or similar appear on the housing up to six hours after the test.

 

7) Overcharging Test

The UN 38.3 transport test prescribes an overcharge test for all rechargeable lithium batteries. For 24 hours, twice the maximum permissible charging current is applied to the battery. The battery must then be stored in a secure area for seven days. No damage may occur during this period for the battery to pass.

 

8) Fast Discharge Test

The final test is also carried out at cell level. The cell is subjected to a discharge current exceeding the permitted maximum. This procedure is repeated several times. As with overcharging, rapid discharge must not damage the battery in any way in order to successfully pass this test.

 

According to UN 38.3, a battery may not be shipped by rail, road or air until it has passed each of these eight test procedures.

What Maintenance Do Electric Vehicles Need?

 

What maintenance?!

 

One of the main benefits of owning an electric vehicle, besides caring for the environment by not using gasoline and emitting fumes into the atmosphere, is the fact that it requires less of your time and money to make sure it runs smoothly.

The initial cost of purchasing such a vehicle is still quite high, but it pays off in the long run. EVs have fewer moving parts than Internal Combustion Engine vehicles, which means they have a smaller number of components in need of regular checkup and repair.

However, a few things will need your attention from time to time:

1) Monitor the battery

In an electric car, the battery takes up most of the space under the hood. While it may be bulky, heavy and complex, it doesn’t require day-to-day maintenance, but it will in time. As with any electric device, the more time passes, the less charge the battery holds and there’s nothing much you can do about it. You may not even notice it at first because it will take a lot for your EV to break down in the middle of the road, but eventually, you will realize that you can cover less mileage than before with a single battery charge.

Electric car batteries usually have a warranty of 8 years, but there are cases where it took 15 years for the battery to be officially faulty. When that happens, you will have two options. You will either return your car to the dealership, or you will find a battery specialty shop to replace your battery pack where you will faint from the sight of the bill. The cost of replacing perhaps the most important part of your electric vehicle is in the thousands or tens of thousands of dollars, which can still be too much for electric car owners depending on how much you had spent on purchasing the vehicle, to begin with. However, if you have grown accustomed to driving cleanly, you probably won’t go back to ICE cars.

2) Assess the brake wear

The interesting thing about electric vehicles is that they use the regenerative braking system, a process involving harnessing energy from the parts stored in the battery system for later use. Thus, brake wear on your vehicle’s pads and rotors is very limited and they will probably last twice as long as on an ICE vehicle.

Not only that, but it will even charge your car’s battery a bit since it captures kinetic energy that would have been lost in ICE vehicles. It cannot replace a charging session, but it can save you when you find yourself away from a charging station with a dangerously low battery level.

3) Check the tires

It doesn’t really matter the type of vehicle you own, tires have to be checked regularly to avoid having to replace them too often. However, tires on electric vehicles get to see extremes for various reasons. Firstly, EVs are 20-30% heavier than ICE cars because of the massive electric battery. Secondly, they deliver instant torque, which can be hard on the tires. Thus, it is common for the tire tread to wear out more quickly than on ICE cars. Your mechanic should pay attention to the inside edge of the tread since this area of the tire is sure to endure considerable damage.

Moreover, good tire pressure ensures a smooth ride and longer tire lifespan, so don’t be lazy and examine them every once in a while. Make sure the pressure is not below or above the recommended value so as not to ruin the tires. Keep the external temperatures in mind when checking, since their variation causes tire damage as well.

Make sure your wheels are aligned every 6 to 12 months, but especially when you hit a hard pothole or a curb. Proper wheel alignment is bound to make the tires last much longer than when they are not all pointing in the same direction.

Rotate your tires in accordance with the owner’s manual and don’t wait for the seasonal tire change. Still, it is important to follow the pattern of the tire tread. If they have the same pattern, and front and back tires are the same size, then it’s easy, just swap them front to back and back to front. But, if not, then you have to put the “left tire” on the right side wheel and vice versa. This can end up costing you more than simply replacing the tires, but if you want to go that way, keep in mind that the tires rotate in the right direction while spinning.

4) Top-up the fluids

Firstly, EVs with a liquid thermal management system will need you to check and replace the coolant regularly in accordance with the owner’s manual, just like with ICE cars. The reason is that, unlike ICE vehicles, electric cars have massive batteries which mustn’t be over or under heated, thus preventing vehicles from functioning properly.

Secondly, brake fluid requires the same amount of attention. Because of the specific braking system on EVs, there is significantly less degradation. You can get away with not changing it up to two years, depending on the make and model of your electric vehicle.

Thirdly, windshield wiper fluid is to be added more often, with taking into account temperature changes which come with different seasons. Choose between summer and winter blends according to the external temperature in order to avoid fluid freezing in the winter.

5) Replace cabin air filter

With EVs spearheading the green revolution and keeping the air outside of the car as clean as it can get, it is not surprising that the air inside the cabin has to be of high quality as well. Some of the electric vehicles that come from production lines these days have a special type of filters which create positive pressure inside the cabin and are capable of making and keeping the air clean as it is in hospital rooms. Not only are outside smells reduced to a minimum, but also are sub-particles and allergens that could enter the cabin. In order to keep such a level of comfort and health care, you mustn’t neglect to change your cabin air filters at least once a year. You can even do it yourself after 30k or so miles of driving, by spending up to $50 on the new filter and an hour of your time.

6) Update the software

If you look at your electric vehicle as a giant gadget, then you understand the importance of regular updates. They ensure that EVs run longer and more smoothly, schedule and reschedule maintenance appointments, but also take care of various security issues that tend to come up more and more these days. For the vehicles that require you to get them to the dealership for an update, don’t be lazy, and get that taken care of as soon as you hear there is an update for your car’s software. If you have the option of the over-the-air software update, then you have nothing to concern yourself with – the update will be run without you.

7) Take care of the body

As long as you take good care of the chassis of your car, you can minimize both your bill at the mechanic and your worry about having to replace your vehicle for a new one. Also, the better your car looks to you, it’s owner and driver, both inside and out, the greater the pleasure you will have in driving it. From there, it goes that if it looks good and it runs well, you will not have to replace it prematurely if you don’t want to.

On the other hand, issues you don’t need to concern yourself with if you own an electric vehicle are as follows:

1)   Fuel

2)   Muffler

3)   Spark plugs and wires

4)   Motor oil

5)   Automatic transmission fluid

6)   Radiator fluid top-ups and fixes

 

Your EV doesn’t have the mentioned components. Therefore, your life is easier because you don’t have to run to your mechanic worrying they can cause you to be stranded on the side of the road with a broken down car.

 

PROPERLY MAINTAIN AND EXTEND THE LIFE OF YOUR RV BATTERIES BY UNDERSTANDING THE BASICS OF YOUR RV BATTERIES AND HOW THEY WORK.

To properly maintain and extend the life of your RV batteries you need to have a basic understanding of what a battery is and how it works. Batteries used in RVs are lead acid batteries, which means they have several cells connected in series. Each cell produces approximately 2.1 volts, so a 12-volt battery with six cells in series produces an out put voltage of 12.6 volts. Lead acid batteries are made of plates, lead and lead oxide submersed in electrolyte that is 36 percent sulfuric acid and 64 percent water. Lead acid batteries don’t make electricity they store electricity. The size of the lead plates and the amount of electrolyte determines the amount of charge a battery can store.

Now it’s very important that you use the right battery for the type of application. The battery used to start and run the engine is referred to as a chassis battery or a starting battery. Vehicle starters require large starting currents for short periods. Starting batteries have a large number of thin plates to maximize the plate area exposed to the electrolyte. This is what provides the large amount of current in short bursts. Starting batteries are rated in Cold Cranking Amps (CCA). CCA is the number of amps the battery can deliver at 0 degrees F for 30 seconds and not drop below 7.2 volts. Starting batteries should not be used for deep cycle applications.

The battery or batteries used to supply 12-volts to the RV itself are commonly referred to as house batteries. House batteries need to be deep cycle batteries that are designed to provide a steady amount of current over a long period. Starting batteries and marine batteries should not be used in this application. True deep cycle batteries have much thicker plates and are designed to be deeply discharged and recharged repeatedly. These batteries are rated in Amp Hours (AH) and more recently Reserve Capacity (RC).

The amp hour rating is basically, how many amps the battery can deliver for how many hours before the battery is discharged. Amps times hours. In other words a battery that can deliver 5 amps for 20 hours before it is discharged would have a 100 amp hour rating 5 Amps X 20 Hours = 100Amp Hours. This same battery can deliver 20 amps for 5 hours 20 Amps X 5 Hours = 100 Amp Hours. Reserve Capacity rating (RC) is the number of minutes at 80 degrees F that the battery can deliver 25 amps until it drops below 10.5 volts. To figure the amp hour rating you can multiply the RC rating by 60 percent. RC X 60 percent.

The two major construction types of deep cycle batteries are flooded lead acid and Valve Regulated Lead Acid. Flooded lead acid batteries are the most common type and come in two styles. Serviceable with removable caps so you can inspect and perform maintenance or the maintenance free type. In VRLA batteries, the electrolyte is suspended in either a gel or a fiberglass-mat. Gel cell batteries use battery acid in the form of a gel. They are leak proof and because of this, they work well for marine applications.

There are several disadvantages to gel cell batteries for RV applications. Most importantly, they must be charged at a slower rate and a lower voltage than flooded cell batteries. Any overcharging can cause permanent damage to the cells. Absorbed Glass Mat, or AGM Technology, uses a fibrous mat between the plates, which is 90 percent soaked in electrolyte. They are more expensive than a standard deep cycle battery but they have some advantages. They can be charged the same as a standard lead acid battery, they don’t loose any water, they can’t leak, they are virtually maintenance free and they are almost impossible to freeze.

The life expectancy of your RV batteries depends on you. How they’re used, how well they’re maintained, how they’re discharged, how they’re re-charged, and how they are stored, all contribute to a batteries life span. A battery cycle is one complete discharge from 100 percent down to about 50 percent and then re-charged back to 100 percent. One important factor to battery life is how deep the battery is cycled each time. If the battery is discharged to 50 percent everyday, it will last twice as long as it would if it is cycled to 80 percent. Keep this in mind when you consider a battery’s amp hour rating. The amp hour rating is really cut in half because you don’t want to completely discharge the battery before recharging it. The life expectancy of a battery depends on how soon a discharged battery is recharged. The sooner it is recharged the better.

What does all of this mean to you? That depends on how you use your RV. If most of your camping is done where you are plugged into an electrical source then your main concern is just to properly maintain your deep cycle batteries. But if you really like to get away from it all and you do some serious dry camping you’ll want the highest amp hour capacities you can fit on your RV.

Deep cycle batteries come in all different sizes. Some are designated by Group size, like group 24, 27 and 31. Basically, the larger the battery the more amp hours you get. Depending on your needs and the amount of space you have available, there are several options when it comes to batteries.

You can use one 12-volt 24 group deep cycle battery that provides 70 to 85 AH.

You can use two 12-volt 24 group batteries wired in parallel that provides 140 to 170 AH. Parallel wiring increases amp hours but not voltage.

If you have the room, you can do what a lot of RVers do and switch from the standard 12-volt batteries to two of the larger 6-volt golf cart batteries. These pairs of 6-volt batteries need to be wired in series to produce the required 12-volts and they will provide 180 to 220 AH. Series wiring increases voltage but not amp hours.

If this still doesn’t satisfy your requirements you can build larger battery banks using four 6-volt batteries wired in series / parallel that will give you 12-volts and double your AH capacity.

 

Solar Battery

Top Benefits of Solar Battery Storage for Your Home

If you have solar panels or are looking to install solar panels, you want to get the most out of your energy system. Installing solar battery storage for excess electricity generated by your panels is one great way to improve your electricity generation system’s performance throughout the day. Here are the top benefits of solar battery storage.

Power When You Need It
One of the biggest problems with solar panels is that they only produce electricity when there’s light outside. Usually, this is when you’re not at home because of daytime activities like work and kid’s sports. Clouds and shade can also reduce the output of solar panels, causing your home to have to draw off the grid if it’s using too much electricity. With a battery, the energy that your solar panels create that isn’t used at the time of its generation gets stored. You can use the stored energy at night or doing those cloudy times when you’re at home without having to draw off the grid.
Solar Battery

Energy Security

The ability to store energy allows you to be less dependent on the grid for additional power. If you live in a place that experiences frequent brownouts or has a decaying energy infrastructure, solar batteries can help insulate you from the consequences of poor grid management. You move to greater self-sufficiency and are more in control of your energy destiny. This is great for people who are looking to get off the grid.

Better for the Environment

Most electricity on the grid is generated through coal plants and other fossil fuels. Storing your energy allows you to use the most environmentally friendly energy available. Your solar power system will continue to use fewer resources throughout the year while producing little to no waste and pollution. Because of advances in photovoltaic technology, panels create less pollution than fossil fuels during their comparative lifetime uses.

A Quiet Solution

No one wants to have to deal with the roar of a generator as it coughs to life. Even a gentle hum can be disturbing for those who are noise sensitive. Unlike noisy generators run by fossil fuels, solar batteries are silent. You don’t have to worry about trying to sleep at night or annoying the neighbors. You get all the benefits of instant electricity with none of the local pollution—both noise and air—produced by a generator. You also don’t have to store flammable or explosive fuel at your home, so you can enjoy your home and breathe easier—literally and figuratively.

 

Lower Electrical Bills

In some places, the electric utility is required to buy back any energy that you create in excess of what you use. While this results in a lower electric bill for you, using solar storage systems also results in a reduction of your energy bill because you consume less energy from the grid. Generally, the buyback is less than what the energy is sold for, so you get more for your money when you can store and use your own energy. Contact the experts at The Himax battery by visiting https://himax.en.alibaba.com/ and learn more about the solar battery.

 

Solar Battery


Solar batteries are an offshoot of the solar panel industry. With the increase in demand for solar panels for a solar energy system, new technology was born…

solar batteries. These batteries are used to store excess power generated by solar panels. But, how do solar batteries work?

Before going into the workings of a solar battery, it is best to learn first about the solar energy system.

The Solar Energy System

A common solar energy system is made up of solar panels, inverter, power or utility meter to determine the amount of electricity produced and tools for mounting the panels. Solar batteries are an adjunct of the system.

Many of the residential solar energy users are connected to a power or utility grid. When their solar panels are producing more than enough electricity, the surplus is fed into the utility grid. When the solar panels are not producing enough electricity that the home needs, they also can draw from the grid.

A power meter is used to measure what has been fed back and how much has been drawn from the grid. A net metering system is used to keep track of this transactions.

How does the solar energy system work

Solar panels are installed on top of roofs, on a pole or even on the ground. These panels are made of cells that harvest the sun’s’ energy which is called photons. When photons hit the cells in a solar panel, they are converted into electrons or what we call direct current (DC) electricity.

The direct current (DC) then flows from the solar panels to the inverter, and the inverter converts them into alternating current (AC). Households need AC to light up the home and to run home appliances.

Ways to Work Solar Batteries is…

Solar batteries make sure that when you need power, there will be power even when the sun is not shining. It is actually referred to as solar-plus storage.

What solar batteries do is to store surplus energy generated from the solar panels. Homes with solar batteries can accumulate excess solar power that can be used later when there is no more sun, such as at night, when the light is most needed.

Solar batteries have their own inverter that converts DC to AC. As they draw DC power from the solar panels, this is converted into AC. The electricity in excess of what the home needs charge the batteries. Homes connected to the grid only send excess electricity to the grid once the batteries are fully charged.

Solar batteries also double as a backup power source when there is power interruption in the community, although for short periods of time only.

So, how do solar batteries works? Easy! It converts DC electricity to AC for home use to operate household appliances. And whatever excess electricity is generated from the solar panels are stored in these batteries to be used or drawn out when needed, such as at nighttime when there is no more sun.

Himax-home-page-design-news-2

Himax-home-page-design-news-2

Overview

Lithium iron phosphate batteries pack a lot of power and value into a small package. The chemistry of these batteries is a big part of their superior performance. But all reputable commercial lithium-ion batteries also include another important element along with the battery cells themselves: a carefully designed electronic battery management system (BMS). A well-designed battery management system protects, and monitors a lithium-ion battery to optimize performance, maximize lifetime, and ensure safe operation over a wide range of conditions.

At RELiON, all our lithium iron phosphate batteries include an internal or external BMS. Let’s have a look at how a RELiON BMS protects and optimizes the operation of a lithium iron phosphate battery.

1. Over and Under Voltage

Lithium iron phosphate cells operate safely over a range of voltages, typically from 2.0V to 4.2V. Some lithium chemistries result in cells that are highly sensitive to overvoltage, but LiFePO4 cells are more tolerant. Still, significant overvoltage for a prolonged period during charging can cause plating of metallic lithium on the battery’s anode which permanently degrades performance. Also, the cathode material may oxidize, become less stable, and produce carbon dioxide which may lead to a buildup of pressure in the cell. All RELiON battery management systems limit each cell and the battery itself to a maximum voltage. The BMS in the LiFePO4 battery, for example, protects each cell in the battery and limits the voltage in the battery to 15.6V.

Undervoltage during battery discharge is also a concern since discharging a LiFePO4 cell below approximately 2.0V may result in a breakdown of the electrode materials. Lithium batteries have a recommended minimum operational voltage. In the Himax 12.8V 100Ah, for example, the minimum recommended voltage is 11V. The BMS acts as a failsafe to disconnect the battery from the circuit if any cell drops below 2.0V.

2. Overcurrent and Short Circuit Protection

Every battery has a maximum specified current for safe operation. If a load is applied to the battery which draws a higher current, it can result in overheating the battery. While it’s important to use the battery in a way to keep the current draw below the maximum specification, the BMS again acts as a backstop against overcurrent conditions and disconnects the battery from operation.

Again, using the RB100 as an example, the maximum continuous discharge current is specified at 100A, the peak discharge current is 200A, and the BMS disconnects the battery from the circuit if the load draws about 280A.

A short circuit of the battery is the most serious form of overcurrent condition. It most commonly happens when the electrodes are accidentally connected with a piece of metal. The BMS must quickly detect a short circuit condition before the sudden and massive current draw overheats the battery and causes catastrophic damage. In the RB100, the battery shuts down within 200-600 microseconds of an external short circuit, then resumes normal operation if the short circuit condition is removed.

3. Over Temperature

Unlike lead-acid or lithium cobalt oxide batteries, lithium iron phosphate batteries operate efficiently and safely at temperatures up to 60oC or more. But at higher operating and storage temperatures, as with all batteries, the electrode materials will begin to degrade. The BMS of a lithium battery uses embedded thermistors to actively monitor the temperature during operation, and it will disconnect the battery from the circuit at a specified temperature. In the example of the RELiON RB100, the BMS disconnects the battery at 80oC (176oF) and reconnects the battery at 50oC (122oF).

4. Cell Imbalance

Lithium-ion batteries have a major difference from lead-acid batteries when it comes to balancing the voltage in each individual cell during charging. Because of small differences in manufacturing or operating conditions, each cell in a battery charges at a slightly different rate. In a lead-acid battery, if one cell charges faster and reaches its full voltage, the typical low end of charge current, along with the excess charge-return, will ensure the other cells get fully charged. In a sense, the cells in a lead-acid battery are self-equalizing during charge.

This is not the case with lithium-ion batteries. When a lithium-ion cell is fully charged, its voltage begins to rise further which may lead to electrode damage. If the charge of the entire battery is stopped when only one cell is fully charged, the remaining cells do not reach full charge and the battery will operate below peak capacity. A well-designed BMS will ensure each cell safely and fully charges before the entire charging process is complete.

Himax-home-page-design-news-1

Himax-home-page-design-news-1

The solar battery lifespan is a very essential factor that needs to be put into consideration by the manufacturers to ensure their batteries are reliable, durable and facilitate the production of energy. The design alone should enable them to resist could and heat cycles.

Therefore, various manufacturers need to have extensive knowledge regarding the solar batteries by ensuring proper steps are followed in order to increase their lifespan. The type of battery should also not be left out.
What You Should Understand?
Solar batteries have many factors and technical details that need to be taken into consideration when sizing up the backup required for a system. Battery system sizing also allows for a long life of service.

What Factor Could Affect the Lifespan of a Battery?
There are different types of batteries, where some are more durable compared to others despite having the same source of power. There are 3 main factors which may affect the durability of solar batteries. Some of them include cyclic life, their temperature, and depth of discharge.
The Cyclic Life
The lifespan of solar battery can easily be determined through its cyclic life or the number of use cycles it has. For example, a lead-acid battery which is flooded is expected to provide 300 to 700 cycles. A GEL cell battery is capable of providing 500 to 5000 cycles. Lithium batteries are capable of offering 2000 cycles.

Depth of Discharge (DoD)
The depth of discharge refers to the extent to which a solar battery can be used relatively to its total capacity. Batteries go down as they are discharged or charged. This, therefore, lowers their ability to store more energy. A battery that comes alongside a nominal capacity of 100 kWh at 60 % DoD will have a remaining charge of 40 kWh

Temperature
A battery attains higher chemical activity when kept under high temperatures. This makes the solar batteries less efficient in colder climates. However, the cyclic life of a battery decreases with the increase in temperature.

How to Increase the Battery Lifespan?
Despite to design of the solar battery, it may not provide longer services if not properly maintained. The following are steps involved in extending its lifespan.
Regulate the Number of Batteries
Try to lower the number of batteries used at the bank. Use of several batteries may increase resistance and connection that is likely to result into unequal charging. Therefore, regulate the number of batteries used in your bank up to 4 or maybe less.

Enhance Equalization on Solar Batteries
Equalization of battery refers to the overcharging process of your solar batteries at a regulated manner. Unequal charging results to plate’s sulphation. Overcharging gets rid of this through gassing. There are those solar batteries that are built with a solar charge controller to suppress overcharging.
Ensure Solar Batteries do not go Uncharged for a Long Time
Solar batteries are likely to be damaged if they sit for a long time in storage. You need to ensure your source of charging is always turned on to enable the battery charge continuously to facilitate a continuous solar light.

Make use of the Appropriate Solar Batteries
Batteries sized appropriately for the application will ensure a long lifespan. Lithium batteries are starting to build up steam since they have a long lifespan and are safer and conducive for the environment. However, GEL cell batteries are still the battery of choice because of their proven life, typically five to seven years in the field when sized properly. GEL cell batteries are still a fraction of the cost of Lithium battery technology, but they are starting to become more and more cost-effective as technologies improve and their share of the market increases. Make sure the kind of battery you use has a voltage rating of 12.8V or 25.6V to make sure it lasts longer.