Lithium is thought to be one of the first elements made after the Big Bang. An enormous amount of Hydrogen, Helium, and Lithium (the first three elements on the periodic table) were synthesized within the first thee minutes of the universe’s existence.
This process is called Big Bang nucleosynthesis. Essentially, all elements heavier than lithium were made much later by stellar nucleosynthesis (like what is happening in the Sun).
Lithium is special for other reasons too
Lithium facts on history
Lithium is from Greek lithos meaning “stone”
Was used in the first man-made nuclear reaction in 1932
Lithium interesting facts
Soft enough to be cut by scissors
The lightest metal, and least dense solid element, so it can easily float on water
Does not occur freely in nature (it’s too unstable), but is found in nearly all lava, mineral water, and sea water
Pure lithium corrodes immediately when exposed to the moisture in air
Lithium in biology
All organisms have a little lithium in their bodies, but it does not seem to serve a biological purpose
Lithium in pills is used to treat bipolar disorder
Lithium in economics
80% of the world’s lithium is in salt flats between Argentina, Chile, and Bolivia
Let’s look at some pictures
Here are some pieces of raw lithium. Notice the lines and grooves cut into the soft metal by the tool they used to cut it. Also note what appears to be a bubble. It is most likely Hydrogen, as this is what is released when lithium reacts to water (or water from moisture in the air).
This is a photograph taken in Bolivia, in what is called ‘Salar de Uyuni’ – the biggest salt lake in the world. The amazing scenery holds a secret – a huge reserve of lithium. With the right investment, Bolivia may become what Kuwait was for oil to the new rechargeable revolution.
A fully developed lithium mine in the Atacama Desert. This is where the material in your 18650 battery most likely comes from.
This is a depiction of Asteroid 2012 DA14 which nearly missed Earth a few years ago. It was once famously valued at $195 billion US dollars for the large amount of metals like iron ore, copper, and lithium trapped inside. Maybe one day we won’t have to dig up our backyard to get the resources we need to enjoy ourselves.
So remember, next time you turn on your vaporizer, or other machine that uses li-ion batteries, to think a little about where it came from and what it means for our future.
https://himaxelectronics.com/wp-content/uploads/2020/05/lithium.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-05-21 09:42:552024-04-26 07:10:06Lithium Was Made In The First Three Minutes Of The Universe’s Existence
The material and chemistry used in the cathode of a battery are vital in determining the battery performance. Currently, the positive electrode materials successfully developed and applied include lithium cobalt oxide (LCO), lithium iron phosphate (LFP), lithium manganate (LiMn2O4), ternary material nickel cobalt manganate (NCM), and nickel cobalt aluminum aluminate (NCA). We will explore a few common chemistries for cathode material in this article.
Lithium cobalt oxide (LCO, LiCoO)
Lithium cobalt oxide, also known as lithium cobaltate, are particularly special because they were the first commercially produced lithium batteries. Lithium cobaltate has many benefits with its high discharge platform, simple synthesis process, high capacity, and good cycle performance. However, cobalt can be relatively toxic, and the price high. It is also difficult to guarantee safety when making large LCO batteries.
Most 3C electronic batteries still use LCO rather than a higher-capacity ternary material because lithium cobalt oxide material has greater density per volume. Lithium cobalt oxide is predominantly used in cell phones and laptops.
Furthermore, the theoretical capacity of lithium cobalt oxide is high, but the actual capacity is only half of what is theorized. The reason is due to the charging process: when the amount of lithium ions extracted from lithium cobalt oxide material is less than 50%, the morphology and crystal form of the material can be kept stable. However, when the lithium-ion extraction amount increases to 50%, the lithium cobaltate material undergoes a phase change. If charging continues at this time, cobalt will dissolve in the electrolyte and generate oxygen, which affects the stability of the battery cycle life and performance.
Lithium iron phosphate (LFP, LiFePO4)
There is wide interest in Lithium iron phosphate cathode materials.
Its main features include non harmful elements, low cost, and good safety and cycle life (its lifespan can reach 10,000 cycles). These characteristics have made lithium iron phosphate materials popular for research, and they are widely used in the field of electric vehicles.
The main disadvantage of lithium iron phosphate is its low energy density. The voltage of lithium iron phosphate material is only about 3.3V, which makes the LFP battery have lower energy storage. Lithium iron phosphate also has poor conductivity and needs to be nanometer-sized. It can be coated to obtain good electrochemical performance, which makes the material become “fluffy” and the compaction density low. The combined effect of the two makes the energy density of lithium iron phosphate batteries lower than that of lithium cobalt oxide and ternary batteries.
Recently, accidents concerning new energy vehicles have occurred and frequently show up on the news. People hope to improve upon the materials and its safety performance by modifying it: some researchers have mixed lithium iron phosphate with manganese to make it have higher voltage and energy density while others have mixed it with NCM ternary material.
Ternary materials (NCM, NCA)
Ternary material is the common name of lithium nickel cobalt manganese oxide (LiNixCoyMn1-x-y02), which is very similar to lithium cobaltate. This material can be balanced and adjusted in its specific energy, cycle, safety, and cost.
The different configurations of nickel, cobalt, and manganese bring about various properties to the material: increasing the nickel content increases the capacity of the material but makes the cycle performance worse; the presence of cobalt makes the material structure more stable but the content too high and capacity reduced; the presence of manganese reduces costs and improves its safety performance, but its high content destroys the layered structure of the material.
Due to the many factors that need to be considered when using these elements, the focus of ternary material research and development has been on finding the proportional relationship between nickel, cobalt, and manganese in order to achieve optimal performance.
If you are interested in the Himax’s high discharge and custom-made batteries, please reach out to us at sales@himaxelectronics.com. We can be the one-stop solution to your products’ needs.
https://himaxelectronics.com/wp-content/uploads/2020/05/LiFePO4-Battery.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-05-11 07:55:532024-04-29 01:22:08What are some cathode materials for lithium-ion batteries?
Whether you are planning to buy a RC drone as a gift to gift someone or want to buy one to fly in your leisure time, some mini RC drones with hidden camera options that can be used as a spy video camera, others with LED blades that can be flown at night. With so many designs and features to choose, following are some useful tips for buying some of the best RC drones available from the market:
Ready- Made vs Build-Your-Own
For teens, RC drones can be a wonderful hobby. It allows them to go outside and develop technical skills to operate various types of gadgets and vehicles. For adults, flying these drones can be a great way to relieve stress from work and studies. Comparing to other RC gadgets and vehicles RC drones can be quite complicated to operate.Therefore, you need to practice a lot before flying them outdoors. On the other hand, before buying an RC drone, you need to choose between ready-made or build-your-own option.
Ready-made RC drones are perfect for those who wish to fly one without considering technical and mechanical sides. Ready-made RC drones are usually preferred by newbie’s as it is easier to operate than build-your-own drone.
Those people who prefer an RC drone kit and build it from scratch are usually those who are interested in exploring everything about their RC drones. If you build one by yourself, you can even customize it and improve its performance. However, bear in mind that it requires a lot of time, patience and efforts.
Gas and Electric Powered RC Drones
Generally speaking, RC drones that run on gas are more rare and expensive than electric ones. They are also more complicated to operate and fly.
Electric ones are less expensive than gas powered RC drones and can be easily operated outdoors. Although their battery packs can be quite expensive, however, they are easier to maintain and operate.
Indoor and Outdoor Drones
Indoor RC drones are perfect for newbie’s and amateur players as they are not as powerful as outdoor RC drones. Moreover, they can only go up to a certain level as they are meant to be used indoors.
Also, you need to make sure that no obviously objects or pets getting into your road when flying RC drones indoor.
Outdoor RC drones are more expensive and powerful than indoor drones and can be easily operated from a wide distance.
Outdoor drones are not recommended for new players as they can harm travelers or vehicles if they get crashed from a high height.
Mini vs Large Drones
RC drones come in a variety of shapes and sizes. Smaller RC drones do not cause any severe damage in case of an accident. They are quite versatile and can be flown indoors and outdoors as well. They’re perfect for new players and do not require much time to set up.
However, they are not as sturdy as bigger RC models.
Larger drones are more suitable for professional players. They closely resemble real helicopters and can be easily flown in windy places.
Bigger models can be quite expensive and you need to follow certain rules while flying such drones outdoors.
LED Blades for RC Drones
RC drones are equally fun when flown at night. You can use special blades that consists of bright neon and LED lights for a better night vision. You can even customize your blades yourself with LED strips. Whether you are flying your drone during the day or night time, try to avoid flying them in public places.
Currently on the market common drone batteries are mainly divided into three kinds.
1. lithium polymer batteries, with high energy density, lightweight features, most stores sell drones mostly powered by lithium polymer batteries.
2. lithium batteries: higher price, but large capacity, lightweight, high stability, and longer service life than lead-acid and nickel-metal hydride batteries. 3. nickel-metal hydride (Ni-MH) batteries: the battery can be used to power drones.
3. nickel-metal hydride (Ni-MH) batteries: moderately priced, but heavier, with longer safety and service life, suitable for large drones that require long flight times.
Li-ion batteries are the most common type of UAV batteries nowadays, which have the advantages of high energy density, large capacity, light weight and easy charging. Polymer batteries are one of the thinnest and lightest drone batteries, capable of meeting the energy needs of small drones, but relatively susceptible to temperature effects. From a comprehensive point of view, Li-ion batteries have become the most popular type of drone batteries on the market.
Common Drone Battery Voltages and Capacities
Drone batteries come in a variety of voltages, with 3.7V, 7.4V, 11V, 14.8V, and so on being commonly used. The higher the voltage, the more power and speed the drone can provide, but at the same time the battery will be heavier and larger.
Generally speaking, small drones use 3.7V or 7.4V batteries, while larger drones require higher voltage batteries to provide sufficient power and speed. But at the same time, the battery voltage also needs to be matched with the motors used in the drone to ensure the efficiency and life of the motors.
Batteries used in drones generally have a capacity of 500mAh to 10,000mAh. The higher the capacity, the longer the battery will last, but it will also be heavier and bulkier.
For small drones, a battery with a capacity of 500mAh to 1000mAh is the most common choice, while larger drones require a higher capacity battery to provide sufficient battery life. Battery capacity also needs to be considered in relation to the weight, flight speed and altitude of the drone.
Maintenance and Repair
The maintenance of an RC drone includes changing the motor and preventing it from overheating. For beginners, it is recommended to seek for some professional help in case a drone is damaged or is not properly working.
A battery with lower C rate can negatively affect the speed and overall performance of your drone. In order to maximize the life cycles of your drone’s battery, please wait for at least half an hour to recharge your drained battery. Also, avoid overcharging it.
You can also join an online website or group to get valuable insights and information regarding RC drones. You can follow various threads and blogs to get updates and reviews for the latest RC drone kits.
Keep an eye out on Himax’s official blog, where we regularly update industry-related articles to keep you up-to-date on the battery industry and related peripheral market.
https://himaxelectronics.com/wp-content/uploads/2020/05/1.jpg480800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-05-05 03:12:212024-04-26 03:46:39Tips To Buy a RC Drone
It has a lot of benefits to solar street lights with lithium batteries. So more and more countries and areas are planning to use solar street lights with a lithium battery.
A small solar panel, after absorbing one-day solar energy, produces enough electricity for a 30 Watt LED solar street light to last 2–3 days. Compared with traditional street lamps, solar street lights with lithium batteries can save a lot of electric energy and can reduce the consumption of electric energy when no one passes, without human control. Some years ago, solar street lights use lead-acid battery or gel battery, these batteries are heavy, the DOD is 70%, low efficiency, and easy to steal by theft. Solar street lights with lithium battery, the lithium battery is light and DOD is 100%, more efficient, and can install on the top of the pole or fix inside the lamp, it has an anti-theft function.
The reduction of advanced control technology and energy consumption, coupled with the development of solar street lights technology and lithium battery technology, has gradually replaced solar street lights with lithium batteries with traditional street lights.
A 250W traditional street lamp lights up for 10 hours a day, and need consumes about 100 KWh a year. Installing 30 Watt LED solar street light can achieve the same light efficiency, so installing solar street lights with lithium battery can save at least 80% of the electricity bill. Solar street light Philippines are widely used. The lighting conditions in this area are good, there are many islands, many places are too far away to be connected to the mains, and most of them are tourist areas. The installation of solar street lights will also help the tourism activities of these places. So the benefits of solar street lights with a lithium battery will include high efficiency, long use life, save a lot of power and anti-theft.
https://himaxelectronics.com/wp-content/uploads/2020/04/solar-street-battery.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-04-28 06:29:452024-04-29 01:26:01What Is The Benefits Of Solar Street Lights With Lithium Battery?
▪ Prime Minister Narendra Modi’s administration unveiled a slew of measures in 2019 to promote the clean-energy vehicles
▪ Several plans are under way to build lithium-ion battery factories in India
Topics
Electric vehicles
MUMBAI : India’s ambition of becoming a global hub for making electric vehicles faces one major hurdle: its lack of access to lithium.
Home to some of the most polluted cities on the planet, the South Asian nation is pivoting toward new-energy vehicles to clean up its toxic air. But with meager resources of lithium, the mineral essential to make batteries for electric vehicles, it is having to scour for resources overseas.
India’s EV production will rely on imports from China of lithium chemicals used to make cathodes and battery cells, according to Jasmeet Singh Kalsi, director at Manikaran Power Ltd., which is exploring setting up India’s first lithium refinery. “China has a thriving lithium chemical, battery cathode, battery cell and EV supply chain. India has none.”
Prime Minister Narendra Modi’s administration unveiled a slew of measures in 2019 to promote the clean-energy vehicles, including a $1.4 billion plan to make India a manufacturing hub for EVs and cutting taxes to spur purchases. While electric cars in India remain a small segment, with an estimated 3,000 sold in 2018 compared with the 3.4 million fossil fuel-powered cars in the same year, the nation is forecast become the fourth-largest market for EVs by 2040, when the segment will comprise nearly a third of all vehicles sales, according to BloombergNEF.
Import Reliance
Several plans are under way to build lithium-ion battery factories in India. Meanwhile, China — the largest electric vehicle market in the world — is dominant in the battery supply chain. Around three-quarters of battery cell manufacturing capacity is in China, and Chinese companies have unparalleled control of required domestic and foreign battery raw materials and processing facilities, according to BNEF.
“Indian companies have been involved in trying to prospect for stakes in overseas resources, and possibly on-shoring more raw materials production capacity in India,” said Sophie Lu, head of metals and mining for BloombergNEF. “But there are very little synergies right now because further up the value chain, battery components manufacturing capacity does not seem to be planned extensively for India.”
A joint venture called Khanij Bidesh India Ltd. has been formed between three state-run companies — National Aluminium Co., Hindustan Copper Ltd. and Mineral Exploration Corp. — to acquire lithium and cobalt mines overseas. Amara Raja Batteries Ltd., the country’s second-biggest traditional battery maker by value, will build a lithium-ion assembly plant, while Suzuki Motor Corp. along with Toshiba Corp. and Denso Corp. is setting up a lithium-ion battery manufacturing plant.
Manikaran signed an agreement with Australia’s Neometals in June to jointly fund the evaluation of developing a lithium refinery in India with a capacity of 10,000 tons to 15,000 tons of the finished product. That capacity falls short of India’s projected requirement of 200,000 tons of lithium hydroxide by 2030, Kalsi said.
Electric vehicles are “slowly going to take off, not with the speed the government perceives it to be, but going ahead the market is going to get pretty huge,” he said.
This story has been published from a wire agency feed without modifications to the text. Only the headline has been changed.
https://himaxelectronics.com/wp-content/uploads/2020/04/EV-Car-Battery.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-04-21 06:22:182024-04-26 06:27:52India’s Electric Vehicle Ambitions Could Stumble On Lack Of Lithium
Battery pole piece spot welding machine work principle:
Battery pole piece spot welder use of ultrasonic metal welding principle, ultrasonic metal welding should be classified as don’t need preheating welding. Oxidation surface is the great friction welding which division, and at the same time two parts are pressed together. This program let two materials to produce the atom so close to the action. Far below melting point relatively slight increase of temperature in the welding process is not important factors. At the same time, because the basic material not liquefied, so there is no microstructure changes, also will not damage to internal structure. Ultrasonic cell metal special welding machine is suitable for: aluminum + nickel, nickel and copper foil, aluminum + aluminum foil, multilayer copper foil, multi-layer aluminum foil, multilayer copper nets, multilayer aluminum mesh, aluminum plate + aluminum strip, aluminum nickel composite belt + aluminium plate, aluminum shell bottom + ni-clad-al strip double point welding; And with nickel and copper foil, nickel band and aluminum belt, aluminium strip and aluminum foil, aluminum band and aluminum cover, aluminum shell and ni-clad-al strip of the material such as the single point, multipoint, single, multi-layer, square, form and process of welding. Features suitable for battery, hardware, electrical appliances and motor industry.
Battery pole piece spot welder features:
due to the bench ultrasonic cell metal welding machine machine 80% use import parts and components, to ensure low failure rate and machine section structure design is reasonable;
ultrasonic lithium ion battery metal welding machine of welding mould can according to different application fast and convenient to change;
ultrasonic cell copper foil nickel sheet welding machine with German import piezoelectric ceramic transducer, stable and durable;
miniature ultrasonic power battery cover sheet welding machine operation easy, built-in electronic protection circuit, the use of safe,
independent research and development, and the ultrasonic cell metal welding mould and welding head, reached the advanced world level, reduce the enterprise cost;
ultrasonic nimh battery pole piece very ear welding machine used for the same kind of metal welding, to foreign non-ferrous metal implement single point or multipoint welding, especially copper aluminum nickel sheet, line, take welding.
Battery pole piece spot welder advantages:
The machine use desktop integration design, reasonable structure, beautiful appearance, Vertical motion, positioning accuracy is high, the welding effect is good; Welding head and the integral design of the mould can ensure the consistency of the welding effect, and extend the welding head life; New mould manufacture and maintenance cost is low, the welding of high efficiency; Advance to set the energy, time of welding parameters, constant welding parameter to ensure the welding quality. The operation is simple, convenient assembly, easy maintenance, can according to the customer the production needs of customized; Combined with quality control system for automatic process monitoring, without professional technician, on-site staff need to accept a day of training that will operate. Features suitable for wire and guide piece of the connections between, lithium nimh battery electric etc with nickel sheet alloy plate ni-clad-al strip connection, household electric parts and wire welding, all kinds of high or low conductivity metal and alloy, etc.
https://himaxelectronics.com/wp-content/uploads/2020/03/01.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-03-30 07:15:422024-04-26 07:08:43Battery pole piece spot welding
Elon Musk promised Tesla would soon have a million-mile battery, more than double what drivers can expect today. A new paper suggests he wasn’t exaggerating.
LAST APRIL, ELON Musk promised that Tesla would soon be able to power its electric cars for more than 1 million miles over the course of their lifespan. At the time, the claim seemed a bit much. That’s more than double the mileage Tesla owners can expect to get out of their car’s current battery packs, which are already well beyond the operational range of most other EV batteries. It just didn’t seem real—except now it appears that it is.
Earlier this month, a group of battery researchers at Dalhousie University, which has an exclusive agreement with Tesla, published a paper in The Journal of the Electrochemical Society describing a lithium-ion battery that “should be able to power an electric vehicle for over 1 million miles” while losing less than 10 percent of its energy capacity during its lifetime.
Led by physicist Jeff Dahn, one of the world’s foremost lithium-ion researchers, the Dalhousie group showed that its battery significantly outperforms any similar lithium-ion battery previously reported. They noted their battery could be especially useful for self-driving robotaxis and long-haul electric trucks, two products Tesla is developing.
What’s interesting, though, is that the authors don’t herald the results as a breakthrough. Rather, they present it as a benchmark for other battery researchers. And they don’t skimp on the specifics.
“Full details of these cells including electrode compositions, electrode loadings, electrolyte compositions, additives used, etc. have been provided,” Dahn and his colleagues wrote in the paper. “This has been done so that others can recreate these cells and use them as benchmarks for their own R+D efforts.”
Within the EV industry, battery chemistries are a closely guarded secret. So why would Dahn’s research group, which signed its exclusive partnership with Tesla in 2016, give away the recipe for such a seemingly singular battery? According to a former member of Dahn’s team, the likely answer is that Tesla already has at least one proprietary battery chemistry that outperforms what’s described in the benchmark paper. Indeed, shortly after the paper came out, Tesla received a patent for a lithium-ion battery that is remarkably similar to the one described in the paper. Dahn, who declined to comment for this article, is listed as one of its inventors.
The lithium-ion batteries described in the paper use lithium nickel manganese cobalt oxide, or NMC, for the battery’s positive electrode (cathode) and artificial graphite for its negative electrode (anode). The electrolyte, which ferries lithium ions between the electrode terminals, consists of a lithium salt blended with other compounds.
NMC/graphite chemistries have long been known to increase the energy density and lifespan of lithium-ion batteries. (Almost all electric cars, including the Nissan Leaf and Chevy Bolt, use NMC chemistries in their batteries, but notably not Tesla.) The blend of electrolyte and additives is what ends up being the subject of trade secrets. But even those materials, as described in the paper, were well known in the industry. In other words, says Matt Lacey, a lithium-ion battery expert at the Scania Group who was not involved in the research, “there is nothing in the secret sauce that was secret!”
Instead, Dahn’s team achieved its huge performance boosts through lots and lots of optimizing of those familiar ingredients, and by tweaking the nanostructure of the battery’s cathode. Instead of using many smaller NMC crystals as the cathode, this battery relies on larger crystals. Lin Ma, a former PhD student in Dahn’s lab who was instrumental in developing the cathode design, says this “single-crystal” nanostructure is less likely to develop cracks when a battery is charging. Cracks in the cathode material cause a decrease in the lifetime and performance of the battery.
https://himaxelectronics.com/wp-content/uploads/2020/03/Transpo-Tesla_himax.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-03-24 06:59:372024-04-29 01:34:27Tesla May Soon Have a Battery That Can Last a Million Miles
Reports from the Energy Storage Research Program at DOE have found that “every year roughly one-million usable lithium-ion batteries are sent for recycling”. Knowing when to replace a battery is an ongoing concern and date-stamping serves as only a partial and imperfect solution. It is important to understand and acknowledge the fact that batteries do not fail suddenly, but rather they follow a predicted decline in capacity losing performance over time. Battery life is governed by usage, not time.
A new battery is rated at a nominal capacity of 100%. As the battery ages, the reserve capacity drops and the battery eventually needs replacing when the reserve capacity falls below a certain level to be defined depending on the application of a battery-powered medical device.
Nickel-based batteries provide about three-years of service; Li-on five. Storage characteristics have also improved. However, under-usage in healthcare is more common than ever, and bio-medical technicians have discovered that many medical batteries that are recycled still have a capacity of above 90%, leading to millions of unchecked batteries being discarded every year.
The date-stamping approach to batteries has several serious flaws:
It does not detect a damaged or prematurely faded battery. Batteries that are used regularly may fade before the expiry date listed on the stamp.
Through this approach, it is also often neglected that even batteries held in storage and are not in use, lose capacity over time.
It is a costly procedure as it does not allow for full battery service life to be used, resulting in most batteries in this system being replaced after less than half of their useful life is still intact. Li-on batteries, for example, often last 2-3 times longer than the date stamp mandates, but also have higher purchase prices making premature disposal even more costly.
By replacing the arguably outdated approach to battery replacement, with a greener, more reliable approach, the future of battery management in healthcare will be increasingly optimized.
https://himaxelectronics.com/wp-content/uploads/2020/03/himax-Battery.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-03-19 08:40:412024-04-28 15:34:58Save Thousands On Medical Batteries Each Year
Batteries achieve the desired operating voltage by connecting several cells in series; each cell adds its voltage potential to derive at the total terminal voltage. Some packs may consist of a combination of series and parallel connections. Laptop batteries commonly have four 3.6V Li-ion cells in series to achieve a nominal voltage 14.4V and two in parallel to boost the capacity from 2,400mAh to 4,800mAh. Such a configuration is called 4s2p, meaning four cells in series and two in parallel.
It is important to use the same battery type with equal voltage and capacity (Ah) and never to mix different makes and sizes. A weaker cell would cause an imbalance, as a battery is only as strong as the weakest link in the chain.
Single Cell Applications
The single-cell configuration is the simplest battery pack; the cell does not need matching and the protection circuit on a small Li-ion cell can be kept simple. Typical examples are mobile phones and tablets with one 3.60V Li-ion cell. Other uses of a single cell are wall clocks, which typically use a 1.5V alkaline cell, wristwatches and memory backup, most of which are very low power applications.
Series Connection
Portable equipment needing higher voltages use battery packs with two or more cells connected in series.
Figure 2: Series connection of four cells (4s).
Adding cells in a string increases the voltage; the capacity remains the same.
High voltage batteries keep the conductor size small. Cordless power tools run on 12V and 18V batteries; high-end models use 24V and 36V. Most e-bikes come with 36V Li-ion, some are 48V. The car industry wanted to increase the starter battery from 12V (14V) to 36V, better known as 42V, by placing 18 lead acid cells in series.
Some mild hybrid cars run on 48V Li-ion and use DC-DC conversion to 12V for the electrical system.
Parallel Connection
If higher currents are needed and larger cells are not available or do not fit the design constraint, one or more cells can be connected in parallel. Most battery chemistries allow parallel configurations with little side effect.
Figure 4: Parallel connection of four cells (4p).
With parallel cells, capacity in Ah and runtime increases while the voltage stays the same.
Series/parallel Connection
The series/parallel configuration shown in Figure 6 enables design flexibility and achieves the desired voltage and current ratings with a standard cell size. The total power is the product of voltage-times-current; four 3.6V (nominal) cells multiplied by 3,400mAh produce 12.24Wh. Four 18650 Energy Cells of 3,400mAh each can be connected in series and parallel as shown to get 7.2V nominal and 12.24Wh. The slim cell allows flexible pack design but a protection circuit is needed.
Figure 6: Series/ parallel connection of four cells (2s2p).
This configuration provides maximum design flexibility. Paralleling the cells helps in voltage management.
Safety devices in Series and Parallel Connection
Positive Temperature Coefficient Switches (PTC) and Charge Interrupt Devices (CID) protect the battery from overcurrent and excessive pressure. While recommended for safety in a smaller 2- or 3-cell pack with serial and parallel configuration, these protection devices are often being omitted in larger multi-cell batteries, such as those for power tool.
Simple Guidelines for Using Household Primary Batteries
Keep the battery contacts clean. A four-cell configuration has eight contacts and each contact adds resistance (cell to holder and holder to next cell).
Never mix batteries; replace all cells when weak. The overall performance is only as good as the weakest link in the chain.
Observe polarity. A reversed cell subtracts rather than adds to the cell voltage.
Remove batteries from the equipment when no longer in use to prevent leakage and corrosion. This is especially important with zinc-carbon primary cells.
Do not store loose cells in a metal box. Place individual cells in small plastic bags to prevent an electrical short. Do not carry loose cells in your pockets.
Keep batteries away from small children. In addition to being a choking hazard, the current-flow of the battery can ulcerate the stomach wall if swallowed. The battery can also rupture and cause poisoning.
Do not recharge non-rechargeable batteries; hydrogen buildup can lead to an explosion. ·Perform experimental charging only under supervision.
Simple Guidelines for Using Secondary Batteries
Observe polarity when charging a secondary cell. Reversed polarity can cause an electrical short, leading to a hazardous condition.
Remove fully charged batteries from the charger. A consumer charger may not apply the correct trickle charge when fully charged and the cell can overheat.
Charge only at room temperature.
https://himaxelectronics.com/wp-content/uploads/2020/03/封面.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-03-19 08:29:232024-04-26 06:24:57Learn How to Arrange Batteries to Increase Voltage or Gain Higher Capacity
TOPICS:Battery TechnologyCarbon DioxideGreen TechnologyMITSustainability
By DAVID L. CHANDLER, MIT NEWS OFFICE SEPTEMBER 22, 2018
This scanning electron microscope image shows the carbon cathode of a carbon-dioxide-based battery made by MIT researchers, after the battery was discharged. It shows the buildup of carbon compounds on the surface, composed of carbonate material that could be derived from power plant emissions, compared to the original pristine surface (inset). Courtesy of the researchers
New lithium-based battery could make use of greenhouse gas before it ever gets into the atmosphere.
A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which is currently highly challenging, this battery could continuously convert carbon dioxide into a solid mineral carbonate as it discharges.
While still based on early-stage research and far from commercial deployment, the new battery formulation could open up new avenues for tailoring electrochemical carbon dioxide conversion reactions, which may ultimately help reduce the emission of the greenhouse gas to the atmosphere.
The battery is made from lithium metal, carbon, and an electrolyte that the researchers designed. The findings are described today in the journal Joule, in a paper by assistant professor of mechanical engineering Betar Gallant, doctoral student Aliza Khurram, and postdoc Mingfu He.
Currently, power plants equipped with carbon capture systems generally use up to 30 percent of the electricity they generate just to power the capture, release, and storage of carbon dioxide. Anything that can reduce the cost of that capture process, or that can result in an end product that has value, could significantly change the economics of such systems, the researchers say.
However, “carbon dioxide is not very reactive,” Gallant explains, so “trying to find new reaction pathways is important.” Generally, the only way to get carbon dioxide to exhibit significant activity under electrochemical conditions is with large energy inputs in the form of high voltages, which can be an expensive and inefficient process. Ideally, the gas would undergo reactions that produce something worthwhile, such as a useful chemical or a fuel. However, efforts at electrochemical conversion, usually conducted in water, remain hindered by high energy inputs and poor selectivity of the chemicals produced.
Gallant and her co-workers, whose expertise has to do with nonaqueous (not water-based) electrochemical reactions such as those that underlie lithium-based batteries, looked into whether carbon-dioxide-capture chemistry could be put to use to make carbon-dioxide-loaded electrolytes — one of the three essential parts of a battery — where the captured gas could then be used during the discharge of the battery to provide a power output.
This approach is different from releasing the carbon dioxide back to the gas phase for long-term storage, as is now used in carbon capture and sequestration, or CCS. That field generally looks at ways of capturing carbon dioxide from a power plant through a chemical absorption process and then either storing it in underground formations or chemically altering it into a fuel or a chemical feedstock.
Instead, this team developed a new approach that could potentially be used right in the power plant waste stream to make material for one of the main components of a battery.
While interest has grown recently in the development of lithium-carbon-dioxide batteries, which use the gas as a reactant during discharge, the low reactivity of carbon dioxide has typically required the use of metal catalysts. Not only are these expensive, but their function remains poorly understood, and reactions are difficult to control.
By incorporating the gas in a liquid state, however, Gallant and her co-workers found a way to achieve electrochemical carbon dioxide conversion using only a carbon electrode. The key is to preactivate the carbon dioxide by incorporating it into an amine solution.
“What we’ve shown for the first time is that this technique activates the carbon dioxide for more facile electrochemistry,” Gallant says. “These two chemistries — aqueous amines and nonaqueous battery electrolytes — are not normally used together, but we found that their combination imparts new and interesting behaviors that can increase the discharge voltage and allow for sustained conversion of carbon dioxide.”
They showed through a series of experiments that this approach does work, and can produce a lithium-carbon dioxide battery with voltage and capacity that are competitive with that of state-of-the-art lithium-gas batteries. Moreover, the amine acts as a molecular promoter that is not consumed in the reaction.
The key was developing the right electrolyte system, Khurram explains. In this initial proof-of-concept study, they decided to use a nonaqueous electrolyte because it would limit the available reaction pathways and therefore make it easier to characterize the reaction and determine its viability. The amine material they chose is currently used for CCS applications, but had not previously been applied to batteries.
This early system has not yet been optimized and will require further development, the researchers say. For one thing, the cycle life of the battery is limited to 10 charge-discharge cycles, so more research is needed to improve rechargeability and prevent degradation of the cell components. “Lithium-carbon dioxide batteries are years away” as a viable product, Gallant says, as this research covers just one of several needed advances to make them practical.
But the concept offers great potential, according to Gallant. Carbon capture is widely considered essential to meeting worldwide goals for reducing greenhouse gas emissions, but there are not yet proven, long-term ways of disposing of or using all the resulting carbon dioxide. Underground geological disposal is still the leading contender, but this approach remains somewhat unproven and may be limited in how much it can accommodate. It also requires extra energy for drilling and pumping.
The researchers are also investigating the possibility of developing a continuous-operation version of the process, which would use a steady stream of carbon dioxide under pressure with the amine material, rather than a preloaded supply the material, thus allowing it to deliver a steady power output as long as the battery is supplied with carbon dioxide. Ultimately, they hope to make this into an integrated system that will carry out both the capture of carbon dioxide from a power plant’s emissions stream, and its conversion into an electrochemical material that could then be used in batteries. “It’s one way to sequester it as a useful product,” Gallant says.
“It was interesting that Gallant and co-workers cleverly combined the prior knowledge from two different areas, metal-gas battery electrochemistry and carbon-dioxide capture chemistry, and succeeded in increasing both the energy density of the battery and the efficiency of the carbon-dioxide capture,” says Kisuk Kang, a professor at Seoul National University in South Korea, who was not associated with this research.
“Even though more precise understanding of the product formation from carbon dioxide may be needed in the future, this kind of interdisciplinary approach is very exciting and often offers unexpected results, as the authors elegantly demonstrated here,” Kang adds.
MIT’s Department of Mechanical Engineering provided support for the project.
Publication: Aliza Khurram, et al., “Tailoring the Discharge Reaction in Li-CO2 Batteries through Incorporation of CO2 Capture Chemistry,” Joule, 2018; doi:10.1016/j.joule.2018.09.002
https://himaxelectronics.com/wp-content/uploads/2020/01/12.jpg400800administrator/wp-content/uploads/2019/05/Himax-home-page-design-logo-z.pngadministrator2020-01-06 09:00:482024-04-29 01:37:41New Lithium-Based Battery Design Makes Use of Greenhouse Gas