Battery Pack

With the increasing applications of lithium-ion batteries in drones, electric vehicles (EV), and solar energy storage, battery manufacturers are using modern technology and chemical composition to push the limits of battery testing and manufacturing capabilities.

Nowadays, every battery, regardless of its size, performance, and life, is determined in the manufacturing process, and the testing equipment is designed around specific batteries. However, since the lithium-ion battery market covers all shapes and capacities, it is difficult to create a single, integrated testing machine that can handle different capacities, currents, and physical shapes with required accuracy and precision.

As the demand for lithium-ion batteries becomes more diversified, we urgently need high-performing and flexible testing solutions to maximize the pros and cons and achieve cost-effectiveness.

The complexity of a lithium-ion battery

Today, lithium-ion batteries come in a variety of sizes, voltages, and applications that were originally not available when the technology was first put on the market. Lithium-ion batteries were originally designed for relatively small devices, such as notebook computers, cell phones, and other portable electronic devices.

Now, they’re a lot bigger in size for such devices as electric cars and solar battery storage. This means that a larger series, the parallel battery pack has a higher voltage, larger capacity, and larger physical volume. Some electric vehicles can have up to 100 pieces of cells in series and more than 50 in parallel.

A typical rechargeable lithium battery pack in an ordinary notebook computer consists of multiple batteries in series. However, due to the larger size of the battery pack, the testing becomes more complicated, which may affect the overall performance.

In order to achieve the best performance of the entire battery pack, each battery must be almost the same as its adjacent cells. Batteries will affect each other: if one of the batteries in a series has a low capacity, the other batteries in the battery pack will be below the optimal state. Their capacity will be degraded by the battery monitoring and rebalancing system to match the battery with the lowest performance.

The charge-discharge cycle further illustrates how a single battery can degrade the performance of the entire battery pack. The battery with the lowest capacity in the battery pack will reduce its charging state at the fastest speed, resulting in an unsafe voltage level and causing the entire battery pack to be unable to discharge again.

Battery Pack

When a battery pack is charged, the battery with the lowest capacity will be fully charged first, and the remaining batteries will not be charged further. In electric vehicles, this will result in a reduction in the effective overall available capacity, thereby reducing the vehicle’s range. In addition, the degradation of a low-capacity battery is accelerated because it reaches an excessively high voltage at the end of its charge and discharge before the safety measures take effect.

No matter the device, the more batteries in a battery pack that is stacked in series and in parallel, the more serious the problem.

The obvious solution is to ensure that each battery is manufactured exactly the same and to keep the same batteries in the same battery pack. However, due to the inherent manufacturing process of battery impedance and capacity, testing has become critical–not only to exclude defective parts but also to distinguish which batteries are the same and which battery packs to put in.

In addition, the charging and discharging curve of the battery in the manufacturing process has a great impact on its characteristics and is constantly changing.

Modern lithium-ion batteries bring new testing challenges

Battery testing is not a new thing, but, since its advent, lithium-ion batteries have brought new pressure to the accuracy of testing equipment, production capacity, and circuit board density.

Lithium-ion batteries are unique because of their extremely dense energy storage capacity, which may cause fires and explosions if they are improperly charged and discharged. In the manufacturing and testing process, this kind of energy storage technology requires very high accuracy, which is further aggravated by many new applications. The wide range of lithium-ion batteries that are available affects the testing equipment as they need to ensure that the correct charge and discharge curve is followed accurately in order to achieve the maximum storage capacity and reliability and quality.

Since there is no one size suitable for all batteries, choosing suitable test equipment and different manufacturers for different lithium-ion batteries will increase the test cost.

In addition, continuous industrial innovations mean that the constantly changing charge-discharge curve is further optimized, making the battery tester an important development tool for new battery technology. Regardless of the chemical and mechanical properties of lithium-ion batteries, there are countless charging and discharging methods in their manufacturing process, which pushes battery manufacturers to expect more unique test functions out of battery testers.

Accuracy is obviously a necessary capability. It not only refers to the ability to keep high current control accuracy at a very low level but also includes the ability to switch very quickly between charging and discharging modes and between different current levels. These requirements are not only driven by the need to mass-produce lithium-ion batteries with consistent characteristics and quality but also by the hope to use testing procedures and equipment as innovative tools to create a competitive advantage in the market.

12v-Battery-Pack

Although a variety of tests are required for different types of batteries, today’s testers are optimized for specific battery sizes. For example, if you are testing a large battery, a larger current is required, which translates to larger inductance, thicker wires, etc. So many aspects are involved when creating a tester that can handle high currents.

However, many factories do not only produce one type of battery. They may produce a complete set of large batteries for a customer while meeting all the test requirements for these batteries, or they may produce a set of smaller batteries with a smaller current for a smartphone customer.

This is the reason for the rising cost of testing–the battery tester is optimized for the current. Testers that can handle higher currents are generally larger and more expensive because they not only require larger silicon wafers but also magnetic components and wiring to meet electromigration rules and minimize voltage drops in the system. The factory needs to prepare a variety of testing equipment at any time to meet the production and inspection of various types of batteries. Due to the different types of batteries produced by the factory at different times, some testers may be incompatible with specific batteries and may be left unused.

Whether it is for today’s emerging factories for mass production of ordinary lithium-ion batteries or for battery manufacturers who want to use the testing process to create novel battery products, flexible test equipment must be used to adapt to a wider range of batteries’ capacity and physical size, thereby reducing capital investment and improving the return on investment.

Battery-Storage-Projects

Battery-Storage-Projects

EDF’S West Burton B battery storage project in Nottinghamshire, one of Europe’s largest battery storage projects | Credit: EDF

The consultancy predicts that US and China will drive global growth in cumulative energy storage capacity, which should top 740GWh by the end of the decade

Energy storage is poised for a decade-defining boom, with capacity set to grow by almost a third worldwide every year in the 2020s to reach around 741GWh by 2030, according to analyst Wood Mackenzie.

The firm’s latest forecasts for the burgeoning sector released on Wednesday point to a 31 per cent compound annual growth rate in energy storage capacity in the 2020s.

Growth will be concentrated in the US, which will make up just under half of global cumulative capacity by 2030, at 365GWh, the analysis predicts, while front-of-the-meter (FTM) energy storage will continue to dominate annual deployments, accounting for around 70 per cent of global capacity additions to the end of the decade.

The US FTM market is set to surge through 2021 due to significant short-term resources planned before slowing slightly through 2025. Beyond 2025, growth will become steadier as wholesale market revenue streams grow and utility investment is normalised, the report adds.

In particular, utility resource planning in the US is set to take a front seat for deployments over the coming decade, it says, in line with major recent shifts in utility approaches to renewables and storage, with the majority of utilities dramatically shifting planned resources towards renewables and storage due to cost and state-driven clean-energy goals.

“We note a 17 per cent decrease in deployments in 2020, 2GWh less than our pre-coronavirus outlook,” said the consultancy’s principal analyst Rory McCarthy. “We expect wavering growth in the early 2020s, but growth will likely accelerate in the late 2020s, to enable increased variable renewable penetration and the power market transition.”

Just behind the US in energy storage deployment, China is expected to see exponential growth in storage capacity, accounting for just over a fifth of global cumulative capacity at 153GW by 2030, according to Wood Mackenzie.

Europe’s growth story, on the other hand, is expected to be slower than its global counterparts, with the UK and Germany continuing to dominate the continent’s FTM market out to 2025, with the markets in France and Italy also opening up.

Wood Mackenzie senior analyst Le Xu emphasized that “storage holds the key to strong renewables growth.”

“The question is whether storage can capture stable long-term revenue streams,” she added. “Low-cost and longer duration storage can increasingly out-compete coal, gas and pumped hydro, enabling higher levels of solar and wind penetration. However, most lithium-ion energy storage systems economically max out at 4 to 6 hours, leaving a gap in the market.”

Life-cycle-of-a-ternary-lithium-battery

With the promotion of energy conservation and environmental protection, more and more environmentally friendly products are being applied to the market. In the battery industry, ternary lithium batteries with many advantages quickly occupied the market, and gradually replace the traditional lead-acid batteries. For the traditional battery, ternary lithium batteries have a long life, energy-saving and environmental protection without pollution, low maintenance costs, charge and discharge completely, lightweight, and so on, the total ternary lithium battery life, how long it will be?

What is a ternary lithium battery?

In nature, lithium is the lightest metal with the smallest atomic mass. Its atomic weight is 6.94g/mol and ρ=0.53g/cm3. Lithium is chemically active and easily loses electrons and is oxidized to Li+. Therefore, the standard electrode potential is the most negative, -3.045V, and the electrochemical equivalent is the smallest, 0.26g/Ah. These characteristics decide that it is a material with high specific energy. Ternary lithium battery refers to the lithium secondary battery that uses three transition metal oxides of nickel-cobalt-manganese as the cathode material. It fully integrates the good cycling performance of lithium cobaltate, the high specific capacity of lithium nickelate, and the high safety and low cost of lithium manganate, which synthesizes nickel-cobalt-manganese and other multi-element synergistic lithium-embedded oxide by molecular level mixing, doping, coating, and surface modification methods. The ternary lithium battery is a kind of lithium-ion rechargeable battery that is widely researched and applied at present.

The life of ternary lithium battery

The so-called lithium battery life refers to capacity decay of nominal capacity with a period of battery use ( at room temperature 25 ℃, standard atmospheric pressure, and discharge at 0.2C)

can be considered the end of life. In the industry, the cycle life is generally calculated by the number of cycles of full charge and discharge of lithium batteries. In the process of use, an irreversible electrochemical reaction occurs inside the lithium battery, which leads to a decrease in capacity, such as the decomposition of the electrolyte, the deactivation of active materials, the collapse of the positive and negative structures, and the reduction in the number of lithium ions inserted and extracted. Experiments have shown that a higher discharge rate will lead to a faster attenuation of capacity. If the discharge current is lower, the battery voltage will be close to the equilibrium voltage and more energy can be released.

Life of ternary lithium battery

The theoretical life of a ternary lithium battery is about 800 cycles, which is medium among commercially rechargeable lithium batteries. Lithium iron phosphate is about 2,000 cycles, while lithium titanate is said to reach 10,000 cycles. At present, mainstream battery manufacturers promise more than 500 times (charge and discharge under standard conditions) in the specifications of their ternary battery cells. Manufacturers recommend that the SOC use window is 10%~90%. Deep charging and discharging are not recommended, otherwise, it will cause irreversible damage to the positive and negative structure of the battery. If it is calculated by shallow charge and shallow discharge, the cycle life will be at least 1000 times. In addition, if the lithium battery is often discharged under high rate and high-temperature environment, the battery life will be greatly reduced to less than 200 times

The number of life cycles of lithium batteries is based on battery quality and battery materials.

  1. The cycle times of ternary materials are about 800 times.
  2. Lithium iron phosphate battery is cycled about 2500 times.

Grepow has long been manufacturing battery packs, ternary lithium batteries, lithium polymer batteries, lithium iron phosphate batteries, and so on. The product has a wide range of applications and high quality. Grepow is the world’s top battery manufacturer, which was founded in 1998, over 20 years of experience in battery manufacturing. There are currently 3 self-owned brands “格氏 ACE”, “GENS ACE” and “TATTU”.

In today’s lithium battery market, ternary lithium batteries are the most widely used. They are moderate in terms of performance and low in price. Therefore, the ternary lithium batteries are the most cost-effective.

12-volts-battery

The word battery simply means a group of similar components. In military vocabulary, a “battery” refers to a cluster of guns. In electricity, a “battery” is a set of voltaic cells designed to provide greater voltage and/or current than is possible with one cell alone.

The symbol for a cell is very simple, consisting of one long line and one short line, parallel to each other, with connecting wires:

cell

The symbol for a battery is nothing more than a couple of cell symbols stacked in series:

battery

As was stated before, the voltage produced by any particular kind of cell is determined strictly by the chemistry of that cell type. The size of the cell is irrelevant to its voltage. To obtain greater voltage than the output of a single cell, multiple cells must be connected in series. The total voltage of a battery is the sum of all cell voltages. A typical automotive lead-acid battery has six cells, for a nominal voltage output of 6 x 2.0 or 12.0 volts:

12 volts battery

The cells in an automotive battery are contained within the same hard rubber housing, connected together with thick, lead bars instead of wires. The electrodes and electrolyte solutions for each cell are contained in separate, partitioned sections of the battery case. In large batteries, the electrodes commonly take the shape of thin metal grids or plates and are often referred to as plates instead of electrodes.

For the sake of convenience, battery symbols are usually limited to four lines, alternating long/short, although the real battery it represents may have many more cells than that. On occasion, however, you might come across a symbol for a battery with unusually high voltage, intentionally drawn with extra lines. The lines, of course, are representative of the individual cell plates:

unusually high voltage symbol for battery

How is the Size of the Battery Relevant?

If the physical size of a cell has no impact on its voltage, then what does it affect? The answer is resistance, which in turn affects the maximum amount of current that a cell can provide. Every voltaic cell contains some amount of internal resistance due to the electrodes and the electrolyte. The larger a cell is constructed, the greater the electrode contact area with the electrolyte, and thus the less internal resistance it will have.

Although we generally consider a cell or battery in a circuit to be a perfect source of voltage (absolutely constant), the current through it dictated solely by the external resistance of the circuit to which it is attached, this is not entirely true in real life. Since every cell or battery contains some internal resistance, that resistance must affect the current in any given circuit:

ideal real battery 1

The real battery shown above within the dotted lines has an internal resistance of 0.2 Ω, which affects its ability to supply current to the load resistance of 1 Ω. The ideal battery on the left has no internal resistance, and so our Ohm’s Law calculations for current (I=E/R) give us a perfect value of 10 amps for current with the 1-ohm load and 10 volt supply. The real battery, with its built-in resistance, further impeding the flow of current, can only supply 8.333 amps to the same resistance load.

The ideal battery, in a short circuit with 0 Ω resistance, would be able to supply an infinite amount of current. The real battery, on the other hand, can only supply 50 amps (10 volts / 0.2 Ω) to a short circuit of 0 Ω resistance, due to its internal resistance. The chemical reaction inside the cell may still be providing exactly 10 volts, but the voltage is dropped across that internal resistance as current flows through the battery, which reduces the amount of voltage available at the battery terminals to the load.

How to Connect Cells to Minimize the Battery’s Internal Resistance?

Since we live in an imperfect world, with imperfect batteries, we need to understand the implications of factors such as internal resistance. Typically, batteries are placed in applications where their internal resistance is negligible compared to that of the circuit load (where their short-circuit current far exceeds their usual load current), and so the performance is very close to that of an ideal voltage source.

If we need to construct a battery with lower resistance than what one cell can provide (for greater current capacity), we will have to connect the cells together in parallel:

batterys internal resistance

Essentially, what we have done here is to determine the Thevenin equivalent of the five cells in parallel (an equivalent network of one voltage source and one series resistance). The equivalent network has the same source voltage but a fraction of the resistance of any individual cell in the original network. The overall effect of connecting cells in parallel is to decrease the equivalent internal resistance, just as resistors in parallel diminish in total resistance. The equivalent internal resistance of this battery of 5 cells is 1/5 that of each individual cell. The overall voltage stays the same: 2.0 volts. If this battery of cells were powering a circuit, the current through each cell would be 1/5 of the total circuit current, due to the equal split of current through equal-resistance parallel branches.

REVIEW:

  • battery is a cluster of cells connected together for greater voltage and/or current capacity.
  • Cells connected together in series (polarities aiding) results in greater total voltage.
  • Physical cell size impacts cell resistance, which in turn impacts the ability for the cell to supply current to a circuit. Generally, the larger the cell, the less its internal resistance.
  • Cells connected together in parallel results in less total resistance, and potentially greater total current.

Coulombic Efficiency: Research Gate

We seldom stress about buying a new phone every few years. We want the new technology. Hence with phones, lithium-ion battery aging is hardly an issue. It is, however, a major factor with an electric vehicle. Those lithium batteries can cost as much as a small fossil-fueled car pumping out pollution.

Lithium-Ion Battery Aging

Concept Electric Car: NREL: Public Domain

It follows that scientists are constantly on the prowl to retard lithium-ion battery aging. Although electric car batteries should last for twenty years, the design life of the vehicle is fifty.

Thus, it would be really nice if the batteries lasted as long. Researchers at Dalhousie University in Halifax think the answer lies in coulombic efficiency.

Coulombic Efficiency and Lithium-Ion Battery Aging

You can read about faradaic efficiency, faradaic yield, current efficiency, and coulombic efficiency here because they are all the same thing. In headline terms, they refer to the ability of a battery to sustain itself over time. We express this as a ratio using the formula Q-Out over Q-In. Q-out is the charge that exits the battery during discharge. Q-in is the amount of charge that enters it during charging. The result is inevitably less than one due to fundamental battery inefficiencies.

The Fundamental Inefficiency of Lithium Ion Batteries

Lithium-Ion Battery Aging

Lithium Research: Dept. of Energy: Public Domain

When we charge a lithium-ion battery, lithium moves across to the graphite, negative anode and lodges there. As we draw the current out, it theoretically all moves back to the cathode.

In practice, a small amount of lithium compound remains on the anode as a thin film. Every time we recharge the battery, this grows thicker. Eventually the lithium can no longer interact with the graphite.

Ongoing Research into Lithium-Ion Battery Aging

Scientists are on the hunt to retard the deterioration of lithium ion batteries. Some say this is the ‘holy grail’ of green energy. The key appears to be putting additives in the electrolyte. However nothing is perfect. Therefore a degree of lithium-ion battery aging will likely be with us forever.

Li-polumer-battery

Batteries play a vital role in our lives. They are used to store electricity and power various electrical appliances. Especially lithium-ion batteries, they are used in a wide range and are often used in some small portable appliances, such as mobile phones. The battery is a consumable material, and it is often charged and discharged. No matter the battery is the best, it has a certain lifespan, and the price of lithium-ion batteries is higher than other batteries, so try to choose good quality lithium-ion batteries when buying, and the service life can be longer , Then how do we detect the quality of lithium-ion batteries?

Li-polumer-battery

How to detect the quality of lithium-ion batteries:

1. The fastest inspection method is to test the internal resistance and maximum discharge current. A good quality lithium ion battery has very small internal resistance and large maximum discharge current. Use a multimeter with a 20A range to directly short-circuit the two electrodes of the lithium-ion battery. The current should generally be about 10A, or even higher, and it can be maintained for a period of time. A relatively stable battery is a good battery.

2. Look at the appearance. The fullness of the appearance, such as a lithium-ion battery of about 2000mAh, is relatively large. The workmanship is fine or the packaging is fullness.

3. Look at the hardness. The middle part of the lithium-ion battery can be squeezed gently or moderately by hand. The hardness is moderate, and there is no soft squeezing feeling, which proves that the lithium battery is a relatively high-quality battery.

4. Look at the weight. Remove the outer packaging and feel whether the weight of the battery is heavy. If it is heavy, it is a high-quality battery.

5. During the live working process of the lithium-ion battery, if the two poles of the battery are not hot after continuous discharge for about 10 minutes, it proves that the battery protection board system is perfect. Generally, the quality of lithium-ion batteries with high-quality protection boards is better than ordinary lithium-ion batteries.

The service life of a good-quality lithium-ion battery is about two or three years. The non-durable performance of a lithium-ion battery is that the power consumption is very fast, and the charging time is reduced accordingly. In order to ensure the long-lasting use of lithium-ion batteries, pay attention to the protection of lithium-ion batteries, such as new batteries. Generally, the first three charges must be charged for 12 hours to activate the battery. Normally, you should also pay attention to it. There will always be a blind spot, which is to charge the mobile phone when it is completely dead. This idea is wrong. In order to protect the lithium-ion battery, try to charge the battery with half of the battery.

According to the Physorg website, researchers at Northwestern University have developed an electrode for lithium-ion batteries that allows the battery to retain 10 times more power than the prior art, and the battery with the new electrode can be fast charging, increasing by 10 Double rates.

Battery capacity and fast charging are two major battery limitations. The capacity is limited by the charge density, which is how much lithium ions the two poles of the battery can hold. Fast charging is limited by the rate at which lithium ions reach the negative electrode from the electrolyte.

Fast-charging

The negative electrode of the existing lithium battery is formed by stacking a carbon-based graphene sheet layer, and one lithium atom needs to be adapted to 6 carbon atoms. In order to increase the amount of electricity stored, scientists have tried to use silicon instead of carbon so that silicon can be adapted to more lithium, reaching 4 lithium atoms corresponding to 1 silicon atom.

However, silicon can significantly expand and shrink during charging, causing rapid breakdown and loss of charge capacity. The shape of the graphene sheet also limits the charging rate of the battery. Although they are only one carbon atom thick, they are very long. Since it takes a long time for lithium to move into the middle of the graphene sheet, the phenomenon of ion “traffic jam” occurs at the edge of the graphene sheet.

Now, the research team has solved the above problems by combining two technologies. First, in order to stabilize the silicon to maintain the maximum charge capacity, they added silicon clusters between the graphene sheets, and the elasticity of the graphene sheets was used to match the change in the number of silicon atoms in the battery, so that a large number of lithium atoms were stored in the electrodes. The addition of silicon clusters allows for higher energy densities and also reduces the loss of charge capacity due to silicon expansion and shrinkage, which is the best of both worlds.

The chemical oxidation process is used to fabricate micropores from 10 nm to 20 nm on graphene sheets, which are called “face defects”, so lithium ions will reach the negative electrode along with this shortcut and will be stored in the negative electrode by reacting with silicon. This will reduce the battery charging time by a factor of 10.

The new technology can extend the charging life of lithium-ion batteries by 10 times. Even after 150 cycles of charging and discharging, the battery energy efficiency is still five times that of lithium-ion batteries on the existing market. And the technology is expected to enter the market in the next three to five years.

Himax Lithium-Battery-Shipping

Nowadays, lithium battery is widely used in various industries due to its high discharge rate, rechargeable and pollution-free. With the globalization of economy and trade, the demand of lithium battery in transportation is increasing. How to transport lithium battery correctly is also an important problem that cannot be ignored by lithium battery manufacturers.

Lithium-Battery-Shipping

What shipping certification does a lithium battery need to pass?

Lithium ion batteries are usually considered as dangerous goods in transportation, so they need to pass multiple shipping certifications to reduce the possibility of accidents. The following is a description of the certifications that may be required to transport lithium batteries.

UN/DOT

UN / DOT is a standard for transportation of goods formulated by the U.S. Department of transportation, which has clear provisions on the transportation standard for lithium batteries. Among them, UN38.3 is a regulation for lithium batteries for air transportation.

This test standard covers eight different tests, all of which focus on the hazards of lithium batteries in transportation. In recent years, UN / DOT has passed a new law to prohibit lithium batteries from being installed on passenger aircraft. Therefore, it is predicted that air transportation of lithium batteries may be banned in the future.

IATA (International Air Transport Association)

Unlike other laws and regulations, IATA does not carry out certification test on specific goods transported. IATA only certifies the shipper of the goods to ensure that the shipper understands the relevant requirements of lithium battery transportation. At the same time, the certified shipper still needs to re certify the qualification every year.

IEC (The International Electrotechnical Commission)

As a non-profit standard making organization, IEC compiles international standards for electrical, electronic and other related technologies. Its standards involve general, safety and transportation specifications. In the IEC standard, IEC 62281 is dedicated to the transportation of primary or secondary lithium batteries, which aims to ensure the safety of lithium batteries during transportation.

CE Marking

CE mark is a self declaration made by the manufacturer to confirm that the product meets the EU product safety requirements. The CE safety certification of EU is more comprehensive, which can ensure that products can get safety certification almost in the world. However, the CE mark does not apply to products sold in the United States.

ANSI (The American National Standards Institute)

Like IEC, ANSI is a non-profit standards development organization that develops consensus based standards. ANSI C18.2M and ANSI C18.3M provide safety standards for portable rechargeable batteries.

In addition to some of the above certification, there are many professional or non professional certification of lithium battery transportation in the world, which are suitable for different situations of transportation.

Do you use devices with lithium battery on the plane?

On the plane, passengers can normally use mobile phones, computers, cameras and other devices that use lithium batteries (mobile devices should turn on flight mode). However, these devices must be placed in their carry on luggage and pay attention to the safety of electricity during use.

Spare lithium-ion batteries, lithium metal batteries and electronic cigarettes, which are easy to generate heat or smoke, must also be carried with them. When carrying with them, passengers should also ensure that these electronic devices will not be accidentally started, damaged or short circuited.

In checked luggage, lithium batteries in operation are prohibited. If there is a lithium battery device in your checked luggage, make sure it is completely closed and does not start automatically, and pack it to prevent damage and short circuit. If it is a lithium-ion battery or a lithium metal battery, it should be protected with the manufacturer’s packaging or adhesive tape, and put in a special bag to prevent the risk of short circuit.

If it is a damaged, defective or recalled lithium battery, please do not take it with you. These batteries may cause safety hazards due to overheating or fire, which may be devastating to the aircraft and its passengers.

How do you transport lithium batteries properly?

First of all, before transporting lithium batteries, it is necessary to confirm whether the batteries or consignors have safety certification. According to the requirements of the transporter, test and register the corresponding safety certification, which is the most efficient method for the certification of transport lithium batteries. Some specifications of lithium batteries, transport companies will also require the shipper to sign a dangerous goods contract.

 

It is also necessary to choose a good transportation company. Because the transportation of lithium batteries is a complicated matter, it is not to pack and mail the batteries directly, so the safety issues in the transportation of lithium batteries must also be considered.

Therefore, it is very wise to choose famous express companies such as USPS and UPS to transport lithium batteries. They have comprehensive transportation guidelines for dangerous goods and a considerable number of trained personnel who understand how lithium batteries work and how to handle them safely.

 

In addition to registration and selection of transportation companies, there are many details to be done in the transportation of lithium batteries.

First, lithium batteries weighing more than 35 kg must be approved by the national authorities before shipment. The greater the net weight of lithium batteries, the higher the risk level, and the more strict control is required.

Secondly, damaged or defective batteries should not be transported, and batteries should be strictly packaged and labeled with lithium battery shipping products. Finally, used lithium batteries for recycling should not be transported by air unless approved by national authorities and airlines. All these measures are related to the safety of the goods and the life of the transporters, so there can be no negligence.

Under the background of economic and trade globalization, it is an inevitable requirement of the times for lithium battery manufacturers to master the methods of transporting products. How to reduce the possibility of safety accidents as much as possible during transportation is also the preparation that manufacturers and transportation companies must make. Hope you can find this article helpful.

 

Thank you for your attention!

Himax Lithium-battery-not-allow-on-airplane

Lithium-battery-not-allow-on-airplane

You must be traveling so soon, and most probably, that’s why you have landed into this great piece of information. Do you know what is involved when traveling with devices containing lithium batteries? I bet not! That’s why you are on this.

Well, there are restrictions when we talk about traveling on planes. One of those restrictions involves lithium batteries. They may seem small, but the impact they can have when they cause a fire on board is unimaginable. Lithium batteries can produce dangerous heat levels, cause ignition, short circuit very easy, and cause inextinguishable fires. That’s why renowned aviation authorities, including those in the USA, have banned lithium batteries when traveling.

What Batteries are Not Allowed on Airplanes?

  1. Lithium Batteries for Spare – Both lithium polymer and lithium metal are not allowed on planes both in carry on and checked baggage. Lithium batteries have hit news headlines in recent months. Suppose a single cell was to catch fire because of the dangers associated with thermal runways. There have been viral videos on YouTube involving various gadgets raging from hoverboards to a pair of earphones. These videos showed these gadgets burning into flames. Aviation authorities have banned some of these gadgets from getting into planes, and the recent ban was Samsung note 7 smart-phones from the USA after it was proven to cause fire and explosives. There are cautions if batteries have to get into the plane, and they should be kept strictly separated from other flammable materials.
  2. Spillable Batteries – Also known as car batteries or wet batteries too are not allowed in planes. But you can be let in with such batteries if, for instance, you have a wheelchair or using the battery to charge a scooter. You can be allowed to have the batteries on the plane. However, you are advised to inform the plane staff so that they can lay down the necessary measures to pack the batteries for the safe flight properly.

How Can Lithium Batteries Prevent you From Flying?

It would be good to let you know the limitation that air passengers are set to observe as they go with devices using lithium batteries or when traveling with spare batteries.

Here are some guidelines:

  1. Carry Fewer PEDs – PEDs are the equipment used with lithium batteries as the source of power. Such material includes electronic devices like cameras, mobile phones, laptops, e-readers, and medical devices such as portable oxygen generators. While traveling on planes, you are supposed to have less than fifteen devices with you either in carry on or checked baggage.
  2. Battery Content and Ratings – Every installed battery in a PED MUST not surpass the following: for the lithium metal or lithium alloy batteries; you are not expected to carry any lithium with more than two grams.

For the lithium-ion batteries, they should indicate an hour watt rating of less than 100 Wh.

I know you wonder how about that battery of yours with no Wh rating, you have to calculate it using the formula below to determine the watts hours rating.

Volts* ampere-hours = Watts hours.

If your battery’s capacity is shown in milliamp here hours, you will need to divide the ampere-hours by 1000 before executing the math.

  1. Protection From Damages – For the batteries that might be allowed in the plane and carried in checked baggage, measures should be put in place to prevent any damage and prevent any unintentional fire incidences.
  2. Complete Devices Switch Off – The devices on board using lithium batteries; they must be switched off entirely and not in sleep mode or hibernation.

Traveling and shipping lithium batteries can be complicated, and failure to know the traveling and shipping procedures and mechanisms can make you not travel.

How Do You Travel With Lithium Batteries?

  1. Smart Luggage – Some of the newly made suitcases, are coming with the inbuilt charging system to power up your phone. However relaxed, they may sound; it’s important to remember that many airline rules never allow them on board. These suitcases have built-in lithium batteries. It’s advisable to check your luggage to confirm it has the lithium batteries. Remove them from the luggage and carry them on board with you.
  2. Lithium Spare Batteries – If you honestly need to travel with extra lithium batteries, you need to transport them in carry-on luggage with every battery separately to protect and prevent short circuits. We recommend retaining them in the original package, taping over the exposed terminals.
  3. Electronic Cigarettes and Vape Pens – Although some airline companies still term vape pens as dangerous, need to confirm before with them in case rules, and procedures have changed. Otherwise, electronic cigarettes with lithium batteries are allowed on planes but only on carry-on luggage.
  4. Power Banks and External Chargers – Power banks and external chargers that are met to charge other devices have inbuilt lithium-ion batteries. You are advised to transport them with the same care as you do spare lithium batteries.
  5. Shipping Lithium Batteries– All shipping requirements should comply with aviation authority guidelines. For the cargo composing of lithium battery devices – laptops and phones being shipped and you as a staff you are not sure whether they are separately packed, kindly contact your business representative for further assistance.

Conclusion

Traveling with lithium battery devices can pose such a big challenge on board. They are avoided on planes following the dangers associated with them in case they cause a fire. However, there those that are entirely not allowed while others are allowed. If you have to travel with them, you either have them on the carry on or at checked luggage. Aviation authorities have gone ahead to ban them. For those that are allowed, they should be limited to keep the minimal chances of fire occurrence. Authorities are forced to do this despite planes having extinguisher systems because; a fire caused by lithium-ion batteries is so enormous such that the system has proven not to put it out. Mind your devices with lithium-ion batteries when on planes.

Himax-High-Rate-Battery

A high rate battery generally refers to a lithium battery, and a lithium-ion battery is a high-charge battery that relies on lithium ions to move between a positive electrode and a negative electrode to operate.

Himax-High-Rate-Battery

High rate battery

During charge and discharge, Li+ is embedded and deintercalated between the two electrodes: when charging the battery, Li+ is deintercalated from the positive electrode, embedded in the negative electrode via the electrolyte, and the negative electrode is in a lithium-rich state; A battery containing a lithium element as an electrode is generally used. It is the representative of modern high-performance batteries.

Lithium batteries are classified into high-rate batteries and lithium-ion batteries. At present, mobile phones and notebook computers use lithium-ion batteries, which are commonly referred to as high-rate batteries, and true high-rate batteries are rarely used in everyday electronic products because of their high risk.

Lithium-ion batteries have high energy density and high uniform output voltage. Self-discharge is a small, good battery, less than 2% per month (recoverable). There is no memory effect. The operating temperature range is -20 ° C ~ 60 ° C. The regenerative function is excellent, the battery can be charged and discharged quickly, the charging efficiency is up to 100%, and the output power is large. long-lasting. It does not contain toxic or hazardous substances and is called a green battery.

The battery charging

It is an important step in the repeated use of the battery. The charging process of the lithium-ion battery is divided into two stages: a constant current fast charging phase and a constant voltage current decreasing phase. During the constant current fast charging phase, the battery voltage is gradually increased to the standard voltage of the battery, and then the constant voltage is turned under the control chip, the voltage is no longer raised to ensure that the battery is not overcharged, and the current is gradually reduced to the rise of the battery power. Set the value and finish charging.

The power statistics chip can calculate the battery power by recording the discharge curve. After the lithium-ion battery is used for many times, the discharge curve will change. Although the lithium-ion battery does not have a memory effect, improper charging and discharging will seriously affect the battery function.

Charging considerations

Excessive charging and discharging of lithium-ion batteries can cause permanent damage to the positive and negative electrodes. The excessive discharge causes the negative carbon sheet structure to collapse, and the collapse causes lithium ions to be inserted during charging; excessive charging causes excessive lithium ions to be embedded in the negative carbon structure, which causes the lithium ions in the sector to be released again.

The charging amount is the charging current multiplied by the charging time. When the charging control voltage is constant, the charging current is larger (the charging speed is faster), and the charging amount is smaller.

The battery charging speed is too fast and the termination voltage control point is improper, which also causes the battery capacity to be insufficient. Actually, the battery electrode active material does not fully react and stops charging. This phenomenon of insufficient charging is aggravated by the increase in the number of cycles.

The battery discharge

For the first charge and discharge, if the time is long (usually 3 – 4 hours is sufficient), then the electrode can reach the highest oxidation state (sufficient power) as much as possible, and the discharge (or use) is forced to The set voltage, or until the automatic shutdown, such as the ability to activate the battery capacity. However, in the ordinary use of the lithium-ion battery, it is not necessary to operate like this, and it can be charged as needed at any time, and it is not necessary to be fully charged when charging, and it is not necessary to discharge first. For the first time charging and discharging, it is only necessary to perform 1 to 2 consecutive times every 3 to 4 months.

High rate battery application

For electric vehicles and hybrid vehicles, the core technology lies in high-rate batteries. Compared with other types of batteries, powerful lithium-ion batteries have the advantages of high cost and poor safety performance, but they have higher specific energy and long cycle life. Such important advantages, and therefore have a broader development prospect.

High rate battery

The technical development of power lithium-ion batteries is also changing with each passing day. Both the capacity and structure have been improved. Experts say that no matter which technical route the battery manufacturer adopts, it should meet the requirements of high safety, wide temperature difference, and charge and discharge functionality. Strong, high rate discharge and other conditions.

Battery capacity involves technology and costs Lithium-ion batteries can be divided into small batteries and large batteries according to their size. Small batteries are usually used in 3C electronic products. The related technologies and industries have developed very maturely, and the overall profit is decreasing. More than 85% of current lithium-ion battery products are small batteries.

Large batteries are also commonly known as power batteries. There are also two types of small power batteries and large power batteries. The former is mainly used for electric tools and electric bicycles. The latter is used in electric vehicles and energy storage fields, all of which use high rate battery.

At present, three types of electric vehicles, namely, pure electric (EV), plug-in hybrid (PHEV) and hybrid (HEV), are in a period of rapid development, which has attracted much attention from the industry. As the core of the future automotive industry, the development of the powerful lithium-ion battery industry has received unprecedented attention and has been raised to a strategic height by major countries.