Himax Solar Battery

There are certain specifications you should use when evaluating your solar battery options, such as how long the solar battery will last or how much power it can provide. Below, learn about all of the criteria that you should use to compare your home energy storage options, as well as the different types of solar batteries.

How to compare your solar storage options

As you consider your solar-plus-storage options, you’ll come across a lot of complicated product specifications. The most important ones to use during your evaluation are the battery’s capacity & power ratings, depth of discharge (DoD), round-trip efficiency, warranty, and manufacturer.

Capacity & power

Capacity is the total amount of electricity that a solar battery can store, measured in kilowatt-hours (kWh). Most home solar batteries are designed to be “stackable,” which means that you can include multiple batteries with your solar-plus-storage system to get extra capacity.

While capacity tells you how big your battery is, it doesn’t tell you how much electricity a battery can provide at a given moment. To get the full picture, you also need to consider the battery’s power rating. In the context of solar batteries, a power rating is the amount of electricity that a battery can deliver at one time. It is measured in kilowatts (kW).

A battery with a high capacity and a low power rating would deliver a low amount of electricity (enough to run a few crucial appliances) for a long time. A battery with low capacity and a high power rating could run your entire home, but only for a few hours.

Depth of discharge (DoD)

Most solar batteries need to retain some charge at all times due to their chemical composition. If you use 100 percent of a battery’s charge, its useful life will be significantly shortened.

The depth of discharge (DoD) of a battery refers to the amount of a battery’s capacity that has been used. Most manufacturers will specify a maximum DoD for optimal performance. For example, if a 10 kWh battery has a DoD of 90 percent, you shouldn’t use more than 9 kWh of the battery before recharging it. Generally speaking, a higher DoD means you will be able to utilize more of your battery’s capacity.

Himax Solar Battery

Round-trip efficiency

A battery’s round-trip efficiency represents the amount of energy that can be used as a percentage of the amount of energy that it took to store it. For example, if you feed five kWh of electricity into your battery and can only get four kWh of useful electricity back, the battery has 80 percent round-trip efficiency (4 kWh / 5 kWh = 80%). Generally speaking, a higher round-trip efficiency means you will get more economic value out of your battery.

Battery life & warranty

For most uses of home energy storage, your battery will “cycle” (charge and drain) daily. The battery’s ability to hold a charge will gradually decrease the more you use it. In this way, solar batteries are like the battery in your cell phone – you charge your phone each night to use it during the day, and as your phone gets older you’ll start to notice that the battery isn’t holding as much of a charge as it did when it was new. For example, a battery might be warrantied for 5,000 cycles or 10 years at 70 percent of its original capacity. This means that at the end of the warranty, the battery will have lost no more than 30 percent of its original ability to store energy.

Your solar battery will have a warranty that guarantees a certain number of cycles and/or years of useful life. Because battery performance naturally degrades over time, most manufacturers will also guarantee that the battery keeps a certain amount of its capacity over the course of the warranty. Therefore, the simple answer to the question “how long will my solar battery last?” is that it depends on the brand of battery you buy and and how much capacity it will lose over time.

Manufacturer

Many different types of organizations are developing and manufacturing solar battery products, from automotive companies to tech startups. While a major automotive company entering the energy storage market likely has a longer history of product manufacturing, they may not offer the most revolutionary technology. By contrast, a tech startup might have a brand-new high-performing technology, but less of a track record to prove the battery’s long-term functionality.

Whether you choose a battery manufactured by a cutting-edge startup or a manufacturer with a long history depends on your priorities. Evaluating the warranties associated with each product can give you additional guidance as you make your decision.

 

How long do solar batteries last?

There are two ways to answer this question and the first is to determine how long a solar battery can power your home. In many cases, a fully charged battery can run your home overnight when your solar panels are not producing energy. To make a more exact calculation, you’ll need to know a few variables, including how much energy your household consumes in a given day, what the capacity and power rating is for your solar battery and whether or not you are connected to the electric grid.

For the sake of a simple example, we’ll determine the size of a battery needed to provide an adequate solar plus storage solution with national average data from the U.S. Energy Information Administration. The average U.S. household will use roughly 30 kilowatt-hours (kWh) of energy per day and a typical solar battery can deliver some 10 kWh of capacity. Thus a very simple answer would be, if you purchased three solar batteries, you could run your home for an entire day with nothing but battery support.

12V 100AH

In reality, the answer is more complicated than that. You will also be generating power with your solar panel system during the day which will offer strong power for some 6-7 hours of the day during peak sunlight hours. On the other end, most batteries cannot run at maximum capacity and generally peak at a 90% DoD (as explained above). As a result, your 10 kWh battery likely has a useful capacity of 9 kWh.

Ultimately, if you are pairing your battery with a solar PV array, one or two batteries can provide sufficient power during nighttime when your panels are not producing. However, without a renewable energy solution, you may need 3 batteries or more to power your entire home for 24 hours. Additionally, if you are installing home energy storage in order to disconnect from the electric grid, you should install a few days’ worth of backup power to account for days where you might have cloudy weather.

 

Solar battery lifespan

The general range for a solar battery’s useful lifespan is between 5 and 15 years. If you install a solar battery today, you will likely need to replace it at least once to match the 25 to 30 year lifespan of your PV system. However, just as the lifespan of solar panels has increased significantly in the past decade, it is expected that solar batteries will follow suit as the market for energy storage solutions grows.

Proper maintenance can also have a significant effect on your solar battery’s lifespan. Solar batteries are significantly impacted by temperature, so protecting your battery from freezing or sweltering temperatures can increase its useful life. When a PV battery drops below 30° F, it will require more voltage to reach maximum charge; when that same battery rises above the 90° F threshold, it will become overheated and require a reduction in charge. To solve this problem, many leading battery manufacturers, like Tesla, provide temperature moderation as a feature. However, if the battery that you buy does not, you will need to consider other solutions like earth-sheltered enclosures. Quality maintenance efforts can definitely impact how long your solar battery will last.

 

What are the best batteries for solar?

Batteries used in home energy storage typically are made with one of three chemical compositions: lead acid, lithium ion, and saltwater. In most cases, lithium ion batteries are the best option for a solar panel system, though other battery types can be more affordable.

1. Lead acid

Lead acid batteries are a tested technology that has been used in off-grid energy systems for decades. While they have a relatively short life and lower DoD than other battery types, they are also one of the least expensive options currently on the market in the home energy storage sector. For homeowners who want to go off the grid and need to install lots of energy storage, lead acid can be a good option.

 

2. Lithium ion

The majority of new home energy storage technologies, such as the , use some form of lithium ion chemical composition. Lithium ion batteries are lighter and more compact than lead acid batteries. They also have a higher DoD and longer lifespan when compared to lead acid batteries.  However, lithium ion batteries are more expensive than their lead acid counterparts.

 

3. Saltwater

A newcomer in the home energy storage industry is the saltwater battery. Unlike other home energy storage options, saltwater batteries don’t contain heavy metals, relying instead on saltwater electrolytes. While batteries that use heavy metals, including lead acid and lithium ion batteries, need to be disposed of with special processes, a saltwater battery can be easily recycled. However, as a new technology, saltwater batteries are relatively untested, and the one company that makes solar batteries for home use (Aquion) filed for bankruptcy in 2017.

 

  • Find the best solar battery for your home

51.2V 100Ah LiFePO4 Battery

12V 150Ah LiFePO4 Battery

12V 120Ah LiFePO4 Battery

 

solar battery

Solar lights can use different kind of battery types. Below we shall explain you different kinds of rechargeable battery which one can use in solar lights.

 

Lead–acid battery and SMF.

lithium ion battery or Li-ion.

lithium ion battery phosphate or LiFePO4.

LEAD-ACID BATTERY AND SMF:

Because of the price advantage people widely use lead acid batteries. It is inexpensive compared to new technologies batteries. But there are many disadvantages compared to Li-ion an LifePO4. It need regular maintenance, Risk of explosion is more, there are lot of environment concerns as it contains lead and it will be difficult to handle extreme weather conditions. Life of the battery is around 3 – 4 years.

 

Two of the biggest disadvantage of using lead acid battery is it needs a bigger solar panel for charging and size of battery is bigger and will require lot of space. Solar panel will have to generate at least 12 V to charge the battery. That means during cloudy days it will be difficult to generate 12 V.

 

LITHIUM ION BATTERY OR LI-ION:

Li-ion battery is compact and priced higher compared to Lead-acid battery. It requires 3.7 V of power for charging. That means solar panel size will be smaller. During cloudy days’ solar panel can generate 3.7 V and these batteries will easily charge.

 

These batteries require no maintenance and life of battery will be 5 – 6 years. Only disadvantage is there might be chances of explosion in extreme weather. Li-ion batteries efficiency reduces during Very high or very low temperatures.

 

LITHIUM ION PHOSPHATE BATTERY OR LIFEPO4.

LiFePO4 battery is compact and priced higher compared to Li-ion. It is most advanced battery type currently available in market. It requires 3.2 V of power for charging. That means solar panel size can be smaller. During cloudy days’ solar panel can generate 3.2 V and these batteries will easily charge.

 

These batteries require no maintenance and life of battery will be 9 – 12 years. Advantages of using this battery is it can with stand extreme weather conditions. Hence this is most safer battery.

 

Usage of Batteries in Solar Lights.

Lead acid batteries are widely in usage for home lighting system and emergency solar lights. Usage of Li-ion and LiFeP04 batteries are in integrated solar light system. All in One lights like, Solar Garden Lights, Solar Street Light, Solar Flood Lights etc. uses these battery types.

 

Solar Home Lighting System :

Home Lighting system requires bigger battery capacity. Bigger battery means more price.  Hence in India people use LED acid batteries. These batteries are manufactured in India unlike Li-ion and LiFeP04 batteries are imported.  These batteries require regular maintenance the life span in less compared to other batteries types.

 

Solar Street Light and Solar Garden Lights:

All the three batteries are available for solar street lights. People have started switching to Li-ion and LiFeP04 batteries for street lights. Li-ion and LiFeP04 batteries are not manufactured in India, It is imported from China, Japan or Taiwan. India has started research on development of Li-ion cell in 2018. Once they start manufacturing these batteries product cost is go down by 20%.

Solar Battery

Top Benefits of Solar Battery Storage for Your Home

If you have solar panels or are looking to install solar panels, you want to get the most out of your energy system. Installing solar battery storage for excess electricity generated by your panels is one great way to improve your electricity generation system’s performance throughout the day. Here are the top benefits of solar battery storage.

Power When You Need It
One of the biggest problems with solar panels is that they only produce electricity when there’s light outside. Usually, this is when you’re not at home because of daytime activities like work and kid’s sports. Clouds and shade can also reduce the output of solar panels, causing your home to have to draw off the grid if it’s using too much electricity. With a battery, the energy that your solar panels create that isn’t used at the time of its generation gets stored. You can use the stored energy at night or doing those cloudy times when you’re at home without having to draw off the grid.
Solar Battery

Energy Security

The ability to store energy allows you to be less dependent on the grid for additional power. If you live in a place that experiences frequent brownouts or has a decaying energy infrastructure, solar batteries can help insulate you from the consequences of poor grid management. You move to greater self-sufficiency and are more in control of your energy destiny. This is great for people who are looking to get off the grid.

Better for the Environment

Most electricity on the grid is generated through coal plants and other fossil fuels. Storing your energy allows you to use the most environmentally friendly energy available. Your solar power system will continue to use fewer resources throughout the year while producing little to no waste and pollution. Because of advances in photovoltaic technology, panels create less pollution than fossil fuels during their comparative lifetime uses.

A Quiet Solution

No one wants to have to deal with the roar of a generator as it coughs to life. Even a gentle hum can be disturbing for those who are noise sensitive. Unlike noisy generators run by fossil fuels, solar batteries are silent. You don’t have to worry about trying to sleep at night or annoying the neighbors. You get all the benefits of instant electricity with none of the local pollution—both noise and air—produced by a generator. You also don’t have to store flammable or explosive fuel at your home, so you can enjoy your home and breathe easier—literally and figuratively.

 

Lower Electrical Bills

In some places, the electric utility is required to buy back any energy that you create in excess of what you use. While this results in a lower electric bill for you, using solar storage systems also results in a reduction of your energy bill because you consume less energy from the grid. Generally, the buyback is less than what the energy is sold for, so you get more for your money when you can store and use your own energy. Contact the experts at The Himax battery by visiting https://himax.en.alibaba.com/ and learn more about the solar battery.

 

Solar Battery


Solar batteries are an offshoot of the solar panel industry. With the increase in demand for solar panels for a solar energy system, new technology was born…

solar batteries. These batteries are used to store excess power generated by solar panels. But, how do solar batteries work?

Before going into the workings of a solar battery, it is best to learn first about the solar energy system.

The Solar Energy System

A common solar energy system is made up of solar panels, inverter, power or utility meter to determine the amount of electricity produced and tools for mounting the panels. Solar batteries are an adjunct of the system.

Many of the residential solar energy users are connected to a power or utility grid. When their solar panels are producing more than enough electricity, the surplus is fed into the utility grid. When the solar panels are not producing enough electricity that the home needs, they also can draw from the grid.

A power meter is used to measure what has been fed back and how much has been drawn from the grid. A net metering system is used to keep track of this transactions.

How does the solar energy system work

Solar panels are installed on top of roofs, on a pole or even on the ground. These panels are made of cells that harvest the sun’s’ energy which is called photons. When photons hit the cells in a solar panel, they are converted into electrons or what we call direct current (DC) electricity.

The direct current (DC) then flows from the solar panels to the inverter, and the inverter converts them into alternating current (AC). Households need AC to light up the home and to run home appliances.

Ways to Work Solar Batteries is…

Solar batteries make sure that when you need power, there will be power even when the sun is not shining. It is actually referred to as solar-plus storage.

What solar batteries do is to store surplus energy generated from the solar panels. Homes with solar batteries can accumulate excess solar power that can be used later when there is no more sun, such as at night, when the light is most needed.

Solar batteries have their own inverter that converts DC to AC. As they draw DC power from the solar panels, this is converted into AC. The electricity in excess of what the home needs charge the batteries. Homes connected to the grid only send excess electricity to the grid once the batteries are fully charged.

Solar batteries also double as a backup power source when there is power interruption in the community, although for short periods of time only.

So, how do solar batteries works? Easy! It converts DC electricity to AC for home use to operate household appliances. And whatever excess electricity is generated from the solar panels are stored in these batteries to be used or drawn out when needed, such as at nighttime when there is no more sun.

Himax-home-page-design-news-1

Himax-home-page-design-news-1

The solar battery lifespan is a very essential factor that needs to be put into consideration by the manufacturers to ensure their batteries are reliable, durable and facilitate the production of energy. The design alone should enable them to resist could and heat cycles.

Therefore, various manufacturers need to have extensive knowledge regarding the solar batteries by ensuring proper steps are followed in order to increase their lifespan. The type of battery should also not be left out.
What You Should Understand?
Solar batteries have many factors and technical details that need to be taken into consideration when sizing up the backup required for a system. Battery system sizing also allows for a long life of service.

What Factor Could Affect the Lifespan of a Battery?
There are different types of batteries, where some are more durable compared to others despite having the same source of power. There are 3 main factors which may affect the durability of solar batteries. Some of them include cyclic life, their temperature, and depth of discharge.
The Cyclic Life
The lifespan of solar battery can easily be determined through its cyclic life or the number of use cycles it has. For example, a lead-acid battery which is flooded is expected to provide 300 to 700 cycles. A GEL cell battery is capable of providing 500 to 5000 cycles. Lithium batteries are capable of offering 2000 cycles.

Depth of Discharge (DoD)
The depth of discharge refers to the extent to which a solar battery can be used relatively to its total capacity. Batteries go down as they are discharged or charged. This, therefore, lowers their ability to store more energy. A battery that comes alongside a nominal capacity of 100 kWh at 60 % DoD will have a remaining charge of 40 kWh

Temperature
A battery attains higher chemical activity when kept under high temperatures. This makes the solar batteries less efficient in colder climates. However, the cyclic life of a battery decreases with the increase in temperature.

How to Increase the Battery Lifespan?
Despite to design of the solar battery, it may not provide longer services if not properly maintained. The following are steps involved in extending its lifespan.
Regulate the Number of Batteries
Try to lower the number of batteries used at the bank. Use of several batteries may increase resistance and connection that is likely to result into unequal charging. Therefore, regulate the number of batteries used in your bank up to 4 or maybe less.

Enhance Equalization on Solar Batteries
Equalization of battery refers to the overcharging process of your solar batteries at a regulated manner. Unequal charging results to plate’s sulphation. Overcharging gets rid of this through gassing. There are those solar batteries that are built with a solar charge controller to suppress overcharging.
Ensure Solar Batteries do not go Uncharged for a Long Time
Solar batteries are likely to be damaged if they sit for a long time in storage. You need to ensure your source of charging is always turned on to enable the battery charge continuously to facilitate a continuous solar light.

Make use of the Appropriate Solar Batteries
Batteries sized appropriately for the application will ensure a long lifespan. Lithium batteries are starting to build up steam since they have a long lifespan and are safer and conducive for the environment. However, GEL cell batteries are still the battery of choice because of their proven life, typically five to seven years in the field when sized properly. GEL cell batteries are still a fraction of the cost of Lithium battery technology, but they are starting to become more and more cost-effective as technologies improve and their share of the market increases. Make sure the kind of battery you use has a voltage rating of 12.8V or 25.6V to make sure it lasts longer.