18650-Li-Ion-Battery-4000mah

With the development of science and technology, batteries have become an indispensable part of our daily life. Among them, 18650 Li-ion battery pack, as a kind of high energy density and long life battery, is widely used in electronic equipment, electric vehicles, aviation and other fields. This article will introduce the principle, characteristics, applications and safety precautions of 18650 lithium-ion battery pack.

First, the working principle of 18650 lithium-ion battery packs

18650 lithium-ion battery pack is composed of positive pole, negative pole, diaphragm, electrolyte and shell. Its working principle is

  • when the external circuit through the current, the lithium atoms on the positive electrode is transferred to the negative electrode, forming lithium ions, thus realizing the mutual conversion of electric energy and chemical energy. This process is controlled by the interaction between the lithium ions and the electrolyte, and the lithium ions migrate between the positive and negative electrodes, thus maintaining the voltage balance of the battery.

Second, the characteristics of 18650 lithium-ion battery packs

  • 18650 lithium-ion battery pack has the advantages of high energy density, long life and no memory effect. Its energy density is more than three times that of traditional lead-acid batteries, so it can provide higher power in a smaller volume. Meanwhile, due to its no memory effect, users can charge it anywhere and anytime, which is convenient. In addition, it also has the advantages of good high temperature performance, light weight, easy mass production.

18650 Lithium Ion Battery Pack

Third, 18650 lithium-ion battery pack application areas

  • 18650 battery pack has a wide range of applications, including electronic equipment, electric vehicles, aviation and so on. In terms of electronic equipment, it is widely used in camcorders, digital cameras, tablet PCs and other fields to provide reliable energy security. In the field of electric vehicles, it replaces lead-acid batteries and improves the range and performance of electric vehicles. In the field of aviation, it is widely used in airplanes, providing reliable energy security for airplanes.

Fourth, safety precautions

Although 18650 lithium-ion battery packs have many advantages, it is still necessary to pay attention to safety in the process of use. First, use lithium-ion battery packs produced by regular manufacturers, avoid using low-quality or counterfeit products. Secondly, please do not put the battery in a high temperature environment when charging, high temperature will damage the battery performance. In addition, please do not disassemble, invert or shake the battery during charging to avoid arcing or short-circuiting. Using 18650 Li-ion battery packs in high temperature and high humidity environments may cause safety problems, so it is recommended to use them in a moderate temperature environment.

 

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax - Lifepo4 12V 150Ah Li Ion Customized Battery Packs

With the continuous advancement of technology, energy storage technology is also developing rapidly, among which 12V lead acid replacement battery is gradually gaining popularity as an environmentally friendly and efficient energy storage battery. This article will elaborate on its characteristics, technology, application scenarios, and market prospects.

12V lead acid replacement battery is a type of lead-acid battery designed to meet the specific energy storage requirements of various applications. Compared with traditional lead-acid batteries, lead acid replacement battery features higher energy density, longer service life, and more environmental friendliness.

The manufacturing process of 12V lead acid replacement battery mainly involves several steps

first, smelting lead and lead dioxide, then manufacturing glass fiber grids, injecting lead and lead dioxide mixture into the grids for solidification, charging, and finally packaging. The negative electrode material of this battery is lead, while the positive electrode material is lead dioxide, and the electrolyte is sulfuric acid.

Lead acid replacement battery has been widely used in various fields. In the power industry, it is used to store renewable energy such as solar energy and wind energy for use during power shortages. In the automotive industry, it serves as a starter battery for vehicles and a storage battery for onboard use. Additionally, in standby power sources, communication, and security fields, 12V Lead Acid Replacement Battery has also been widely applied. Its high energy storage density, fast charging speed, and long service life make it highly cost-effective and practical in energy storage applications.

12v Lead Acid Replacement Battery

In the market, lead Acid Replacement Battery has occupied a certain market share. Some well-known brands such as Panasonic, Samsung, and LG are producing and selling this type of battery. These brands have their own advantages in manufacturing processes, performance, and quality, so they are also highly favored by consumers. At the same time, with the continuous advancement of technology and expanding application scenarios, the market demand for this battery is also increasing.

Conclusion

Overall, lead acid replacement battery, as an environmentally friendly and efficient energy storage battery, has high application value and market prospects. Its high energy storage density, fast charging speed, and long service life can meet the energy storage requirements of various application scenarios. At the same time, with the continuous advancement of technology and expanding market, the production cost of this battery is also gradually decreasing, making it more widely used and popularized in the field of energy storage. We believe that in the near future, 12V lead acid replacement battery will become an important choice for environmental energy storage, bringing more convenience and benefits to our lives and production.

 

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax Decorative Pictures - battery pro

Inconsistencies in custom lithium battery pack parameters mainly refer to inconsistencies in capacity, internal resistance, and open circuit voltage. Inconsistencies in cell performance are formed during the production process and deepen during use. Today, the editor will take you to understand the issue of consistency of lithium battery packs.

1.Definition of co-nsistency

The consistency of custom lithium battery pack refers to the convergence of a group of important characteristic parameters of lithium batteries. It is a relative concept. There is no most consistent, only more consistent. For multiple strings of cells in the same battery pack, it is best for each parameter to be within a smaller range for better consistency.

Adding the time dimension, consistency refers to the consistency of all characteristic parameters of all cells in the battery pack throughout their life cycle, taking into account inconsistencies in capacity attenuation, internal resistance growth, and aging rates. The life of the entire battery pack is our ultimate focus on consistency.

The purpose of pursuing consistency is not only to maximize the capabilities of the custom lithium battery pack (including maximum power, maximum current, and maximum available capacity) in the current state, but also to maintain such capabilities for as long as possible.

2.The concept of inconsistency

Inconsistencies in custom lithium battery pack parameters mainly refer to inconsistencies in capacity, internal resistance, and open circuit voltage. The voltage is the initial voltage of the battery when assembled. The internal resistance is the AC internal resistance when fully charged, and the capacity is the discharge capacity of the battery cell after it is fully charged.

Accumulation occurs with the continuous charge and discharge cycles of the battery during use, resulting in greater differences in the status (SOC, voltage, etc.) of each individual battery;

The usage environment in the lithium battery pack also affects every single cell. This leads to the inconsistency of single cells gradually amplifying during use, which in some cases accelerates the degradation of the performance of some single cells, and ultimately causes premature failure of the lithium battery pack.

Supplement: SOC is used to describe the remaining power of the battery and is one of the important parameters during battery use. SOC estimation is the basis for judging whether the battery is overcharged or discharged.

The open circuit voltage of lithium batteries has a clear and monotonic correspondence with the battery’s charge. As long as the accurate open circuit voltage is obtained, the battery’s charge can be calculated.

Custom Lithium Battery Pack

3.Causes of inconsistency

The inconsistency of the custom lithium battery pack is a continuous accumulation process. The longer the time, the greater the difference between the single cells; and the custom lithium battery pack will also be affected by the use environment, and the single cells will be inconsistent in the future use process. The characteristics will be gradually amplified, causing the performance of some individual batteries to decline at an accelerated rate, and ultimately causing the battery to become useless.

The inconsistency of lithium battery packs is mainly affected by time. The reasons mainly include two aspects:

  1. First of all, there are process problems and uneven materials in the manufacturing process, which make the materials and materials of lithium batteries slightly different. After the lithium battery pack is put into use, the electrolyte density of each battery in the battery pack will have a difference. and temperature and ventilation conditions, self-discharge degree charging and discharging processes, etc.as well, there may be differences in capacity and internal resistance of batteries of the same model shipped from the same batch.
  2. When used in a vehicle, the electrolyte density, temperature and ventilation conditions, self-discharge degree and charging and discharging process of each battery in the lithium battery pack are affected by differences.

4. Scope of consistency evaluation

Personally, I understand that the consistency of all cells used as power, regardless of series or parallel relationship. Give a simple example.

 

Parallel connection situation

The battery cell with low discharge capacity (code B) is connected in parallel with other normal battery cells to form a parallel module D. For example, this module has 10 batteries connected in parallel. Each parallel module must provide the same current, such as 100A, to discharge the system. For other normal parallel modules, each battery discharges 10A; B can only discharge a maximum current of 1A, and the other 9 batteries each need to discharge 11A. Generally speaking, these cells will age faster than other parallel modules due to long-term overloading. One day, this parallel module’s overall maximum discharge capacity cannot reach the designed maximum capacity. This parallel battery pack has become a bottleneck in the discharge capacity of the entire battery pack.

Series connection

According to the general situation, the series connection relationship is mainly between modules. Continuing the previous plot of the parallel connection situation, there is a battery pack D that is more aged than other battery packs in the entire battery pack. D has a small capacity and a large internal resistance. Reflected on the curve between SOC and open circuit voltage, the open circuit voltage corresponding to the same SOC has a higher voltage at D terminal. When the entire battery pack is charged, D reaches the charging cut-off voltage first, and the battery pack stops charging. The other modules haven’t eaten enough, and he is already about to burst his belly, because it is getting smaller with age.

Therefore, cell consistency is not a matter within a module that is welded together, but is a requirement for all power batteries.

What hazards and problems will occur if the lithium battery pack is inconsistent?

Poor consistency may lead to uneven real-time voltage distribution of each battery cell during charging and discharging, causing overvoltage charging or undervoltage discharging, causing safety issues.

details as follows:

① Capacity loss.

The cells form a custom lithium battery pack. The capacity conforms to the “barrel principle”. The capacity of the worst cell determines the capacity of the entire battery pack.

② Loss of life.

If a small-capacity battery is fully discharged every time and the output is too strong, it is likely to reach the end of its life first. When the life of the battery core ends, a group of battery cores welded together will also end their life.

③The internal resistance increases.

With different internal resistances, the same current flows, and the battery core with large internal resistance generates relatively more heat. If the battery temperature is too high, the degradation rate will be accelerated, and the internal resistance will further increase. Internal resistance and temperature rise form a pair of negative feedback, which accelerates the degradation of high internal resistance cells.

Lithium batteries use protective circuit systems during use to ensure safety. The intuitive performance of the consistency of lithium batteries during use is the difference in voltage consistency (voltage difference), and the detection of the protection system is based on voltage monitoring. When the voltage of one of the single cells reaches the protection condition, the battery circuit will be cut off, regardless of whether the other single cells are fully charged or discharged. After continuous charging and discharging, this difference will become larger and larger until the battery pack loses its use value. Safety issues can occur when combined with factors such as individual protection system failures or failures.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
li-ion-14.8v-2200mAh

18650 lithium ion battery pack 3S8P 11.1V 20Ah for petroleum exploration equipment

Petroleum exploration equipment is a portable field exploration equipment for petroleum geology and petroleum reserve sources. It can detect relevant geological layers at the surface level. Through advanced nuclear magnetic resonance core analysis, it uses the hydrogen nuclei of oil and water to have resonance in the magnetic field and Generate signal characteristics to detect rock physical properties to discover underground related petroleum sources and determine the content of petroleum reserves. Traditional outdoor power supply devices all use lead-acid batteries. Their shortcomings such as low energy density, large volume, and high quality add burden to explorers’ outdoor work. New 18650 lithium ion battery pack for petroleum exploration equipment have high energy ratio, light weight, small volume, and High cycle life, high safety, high voltage, good consistency and other advantages.

 

18650 battery pack 3S8P 11.1V 20Ah for field water quality monitor

The field water quality monitor is a portable water quality testing equipment that can conduct quality inspection of water resources and detect the degree of pollution of water quality. The main components of the instrument are small electric water pumps, mixers, heating devices, sensing parts, display parts, etc. The instantaneous current requirement for equipment startup is relatively large, with the peak current reaching 20A and the normal operating current being 4~5A. The requirements for continuous working time of the battery are relatively high. For this reason, our company uses imported batteries, which have high energy ratio, light weight, and With the advantages of small size, high cycle life, high safety, and high voltage consistency, the lithium battery pack is designed to output an overcurrent protection value of 30A, a continuous operating current of 7A, and a charge capacity of 20Ah, which fully meets the power needs of the instrument.

18650 Lithium Ion Battery Pack 14.8V

 

Custom lithium battery pack 32700 4S2P 25.6V 11Ah for track detection instrument

The exquisite aluminum alloy shell is designed according to customer requirements, and meets waterproof and shockproof requirements, as well as good heat dissipation requirements under high current operation.

 

Himax focus on 18650 lithium ion battery pack and 18650 Lithium Ion battery pack manufacturing for over 12 years. We can provide all kinds of custom lithium battery pack for customers. Please get in touch with us if you have demands.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Data trend chart - Gsm-Discharges-Liion

The consistency of self-discharge is an important part of the influencing factors. Batteries with inconsistent self-discharge will have large SOC differences after being stored for a period of time, which will greatly affect its capacity and safety. Studying it will help improve the overall level of our custom lithium battery pack products, obtain a higher lifespan, and reduce the defective rate of products.

A battery containing a certain amount of electricity will lose part of its capacity after being stored at a certain temperature for a period of time. This is called self-discharge. To simply understand, self-discharge is the loss of battery capacity when it is not in use, such as the negative electrode’s power returning to the positive electrode or the battery’s power being lost through side reactions.

The importance of self-discharge

Custom lithium battery pack is currently used more and more widely in various digital devices such as notebooks, digital cameras, and digital camcorders. In addition, they also have broad prospects in automobiles, mobile base stations, energy storage power stations, etc. In this case, the use of batteries no longer appears individually as in mobile phones, but more in the form of battery packs connected in series or parallel.

The capacity and life of the battery pack are not only related to each individual battery, but also to the consistency between each battery. Poor consistency will greatly drag down the performance of the battery pack.

The consistency of self-discharge is an important part of the influencing factors. Custom lithium battery pack with inconsistent self-discharge will have large differences in SOC after being stored for a period of time, which will greatly affect its capacity and safety. Studying it will help improve the overall level of our battery packs, obtain a higher lifespan, and reduce the defective rate of products.

Custom Lithium Battery Pack (Article illustrations)

 

 

Self-discharge mechanism

The lithium cobalt graphite battery electrode reaction is as follows:

When the battery is open circuit, the above reaction does not occur, but the power will still decrease. This is mainly due to the self-discharge of the battery. The main causes of self-discharge are:

a. Internal electron leakage caused by local electron conduction in the electrolyte or other internal short circuits.

b. External electronic leakage caused by poor insulation of the battery seal or gasket or insufficient resistance between the external lead cases (external conductors, humidity).

c. Electrode/electrolyte reaction, such as corrosion of the anode or reduction of the cathode due to electrolyte and impurities.

d. Local decomposition of electrode active material.

e. Passivation of the electrode due to decomposition products (insoluble matter and adsorbed gas).

f. The electrode is mechanically worn or the resistance between the electrode and the current collector increases.

The self-discharge of metal impurities causes the aperture of the separator to be blocked, or even pierces the separator to cause a local short circuit, endangering the safety of the battery.

Self-discharge causes the SOC difference between batteries to increase and the battery pack capacity to decrease.

Due to the inconsistent self-discharge of the custom lithium battery pack, the SOC of the batteries in the battery pack will differ after storage, and the battery performance will decrease. Customers often find performance degradation after receiving a battery pack that has been stored for a period of time. When the SOC difference reaches about 20%, only 60% to 70% of the capacity of the combined battery remains.

Large differences in SOC can easily lead to overcharge and overdischarge of the battery.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax Decorative figure

As technology becomes increasingly advanced, the demand for reliable and long-lasting battery power has also escalated. AGM replacement battery provides a cost-effective and efficient solution for devices that are experiencing poor battery performance or have become outdated due to technology advancements.

What is an AGM battery?

AGM (Absorbent Glass Mat) battery is a type of lead-acid battery that utilizes a unique separator technology. The separator is a fiberglass mat that is placed between the positive and negative plates of the battery. This mat absorbs the electrolyte solution, which allows for a thinner separator and more efficient energy storage.

AGM batteries are known for their high-cycle life, robustness, and ability to maintain their performance in adverse conditions. They are commonly used in applications that require reliable backup power, such as uninterruptible power supplies (UPS) and medical devices.

Why replace the battery?

There are several reasons why replacing an AGM battery is beneficial:

  1. Improved performance: AGM replacement battery typically offers improved performance over the original battery. They can provide higher capacities, longer runtimes, and faster charging capabilities.
  2. Extended lifecycle: AGMs are designed to last longer than standard lead-acid batteries. They can withstand a higher number of charge/discharge cycles, resulting in fewer battery replacements.
  3. Saving money: In some cases, replacing an AGM battery can be less expensive than purchasing a new device or upgrading to a higher-capacity battery.
  4. Environmentally friendly: AGMs are recyclable and contain no harmful substances, making them an environmentally responsible choice.
  5. Peace of mind: Knowing that your critical devices are backed up by a reliable power source can provide peace of mind during unexpected power outages or equipment failures.

12Volt 200Ah AGM Replacement Battery

How to choose an AGM replacement battery

When choosing an AGM replacement battery, it’s important to consider the following factors:

  1. Application: Determine the intended use of the battery and choose a model that meets the specific requirements. For example, a UPS may require a higher capacity and faster charging capability than a medical device.
  2. Voltage and capacity: Compare the voltage and capacity requirements of the device with the specifications of the replacement battery. Ensure that the new battery provides sufficient power for the device’s needs.
  3. Physical dimensions: Check the physical dimensions and mounting requirements of the device to ensure that the new battery can be installed and fit into the designated space without problems. Sometimes customized batteries or adapters may be required due to differences in size or specifications.
  4. Warranty: Consider the length and terms of the warranty offered by the manufacturer. A long warranty period can provide peace of mind in the event of battery failure.
  5. Price: Factor in the cost of the battery, including any additional features or services offered by the manufacturer, when making your decision. Cost-effectiveness is an important factor, but don’t compromise on quality and performance.
  6. Reliable Manufacturer:Choose a reputable manufacturer with a track record of quality products and customer satisfaction. Check online reviews and research different brands before making your selection.
  1. Longevity: Choose a battery with a long expected lifespan to ensure that it will serve you for a considerable amount of time without requiring frequent replacements.
  2. Environmentally friendly: If environmental concerns are important to you, choose a battery that is recyclable and made from sustainable materials. This will help reduce waste and protect the planet.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
5v-2200mah-li-ion-battery

As the world transitions to a more sustainable and renewable energy future, the need for reliable and high-performing batteries has never been greater. Custom lithium battery pack is at the forefront of this emerging trend, providing a tailored solution for the diverse needs of the global energy market.

Custom lithium battery pack stands out from traditional battery technologies with its exceptional combination of power and longevity. Lithium-ion technology allows for smaller, more powerful battery cells that can store and release energy quickly while maintaining a long lifespan. This technology represents a significant advancement over traditional battery options, particularly in high-performance applications such as electric vehicles and grid-scale energy storage systems.

Custom lithium battery pack’s customizability is another key factor that sets it apart from the competition. With the ability to tailor battery packs to specific customer requirements, custom lithium battery packs can deliver the exact performance, capacity, and safety characteristics needed for a given application. This level of customization flexibility allows companies to innovate and iterate quickly, technology trends.

Custom Lithium Battery Pack

Moreover, custom lithium battery pack’s commitment to sustainability and environmental responsibility is another key factor distinguishing it in the market. The use of recyclable materials and closed-loop manufacturing processes minimizes the environmental impact of battery production while optimizing resource utilization. This not only reduces the carbon footprint of energy storage but also contributes to a more sustainable planet.

Looking ahead, custom lithium battery pack’s game-changing technology and customization capabilities position it well to support the global shift towards renewable energy. As the demand for electric vehicles and energy storage solutions continues to grow, Custom Lithium Battery Pack’s advanced technology and tailored solutions will play a critical role in meeting the world’s energy needs.

Custom lithium battery pack’s success is a testament to the company’s focus on innovation and customer satisfaction. With its commitment to excellence and a forward-thinking approach, custom lithium battery pack is poised to shape the future of energy storage and beyond.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Fast-charging

The “EU Batteries and Waste Battery Regulations”(hereinafter referred to as the “New Battery Law”) officially came into effect on August 17. The new regulations will have a profound impact on all aspects of the entire life cycle of the battery industry chain including custom lithium battery pack design, production, and recycling in the EU.

Among them, the release of battery passport information has particularly attracted industry attention. According to the battery passport concept proof released by the Global Battery Alliance (GBA), product information has four important components: battery information (Battery), material information (Material), environmental social responsibility and corporate governance information (ESG), data source information (Data).

Himax - 120-Ah-Lifepo4

So, will the information required to be released by the battery passport bring intellectual property protection challenges to custom lithium battery pack design?

Extending to the impact on battery design, the application of battery passport will put forward new requirements for battery design; Will the battery cell design configuration in the European market tend to be diversified or more single; What changes can companies make on the R&D side to cope with this? Meet new challenges and seize new opportunities.

At the same time, the battery passport contains information about some manufacturing segments, which poses more challenges or opportunities for battery production; how equipment companies should help battery companies improve their carbon footprint is currently a hot topic in the industry.

Recently, Hu Ke, general manager of Elacode Europe, had an in-depth discussion and communication with Li Zhe, associate professor and doctoral supervisor of Tsinghua University, and Yang Rukun, chairman of Jiyang Intelligent, on the application of battery passports in the new battery law in the field of custom lithium battery pack design and battery manufacturing. This helps the industry gain a deeper understanding of the impact of battery passports on the industry and how companies can respond to future opportunities and challenges.

 

The impact of new battery law on battery design

Will the information required to be published in the battery passport bring intellectual property protection challenges to battery design?

According to several Pilot (verification) cases on battery passports given by GBA (Global Battery Alliance, International Battery Alliance), some information related to the design of battery packs and battery cells is indeed announced, such as the design of the entire battery pack. Energy grade, the quality of key metals used in them, etc.

18500 3.7v 1100mah and Custom Lithium Battery Pack

However, judging from the current three Pilot (verification) cases, the published information is relatively information that needs to be disclosed in the process of supplying battery cells or custom lithium battery pack to vehicle companies. The GBA Battery Passport does not require manufacturers to publish confidential information, such as trace amounts of metal doping, unique processes used in battery design and manufacturing, etc. Therefore, the current scope of battery passport disclosure will not affect the intellectual property protection of battery companies.

The Pilot sample of Battery Passport contains some battery performance information, such as cycle life, but some companies choose not to publish it. What are the reasons? Can share the latest research results of forward R&D and simulation-driven design in battery life prediction and failure analysis?

The issue of battery cycle life is a topic of great concern. In the case of the Battery Passport Pilot, Tesla is one of the few companies to announce battery cycle life. However, the cycle life figures it publishes are relatively low, even more so compared with the battery life figures claimed by some domestic vehicle companies. Much lower than the figures for energy storage batteries.

In fact, judging from the actual life of power batteries and energy storage batteries, the distribution range of cycle life is quite wide. A typical private car is charged and discharged twice a week, and its service life is about 10 years. In this case, the power battery is not required to have a cycle life of more than 5,000 times.

In contrast, energy storage batteries are required to have a cycle life of close to 7,000 to 12,000 times within a 10- or even 20-year warranty period. This wide range of life is mainly affected by the construction of the battery, the materials used, and key processes.However, many companies face specific pressures in practical applications, especially in energy storage batteries.

12V 100ah Lifepo4 Battery and Custom Lithium Battery Pack

 

The fiercely competitive energy storage market forces companies to seek breakthroughs in low-cost, long-life batteries. This has led to some high cycle life figures on the market, sometimes as high as 14,000 to 12,000 cycles. However, many companies have found that under laboratory conditions, There is a gap between observed longevity and user expectations.

As for why some companies choose not to publish performance information such as cycle life, firstly, there are currently no mandatory regulations. Secondly, it may depend on the promotion of battery passports among companies. To solve this problem, some solutions have emerged in the long-life battery design and manufacturing field.

Regarding the basic materials and formulas of batteries, there are already formulation solutions for long-life energy storage batteries. These solutions help increase the cycle life from two or three thousand times to the expected five or six thousand cycles of iron lithium. In addition, some new electrolytes, additives, lithium salts, and other solutions also provide more possibilities for custom lithium battery pack design and manufacturing. These solutions mainly involve using new additives, material selection, and process improvements.

In this process, modeling and simulation methods play an essential role in developing long-life batteries. Modern battery models can already simulate the internal aging mechanism of the battery so that the impact of materials, formulations, design, and manufacturing characteristics on life can be predicted from a mechanistic perspective.

In addition, reasonable modeling methods can reduce the need for long-life multiple-cycle experiments and accelerate the battery development process oriented to life indicators, thus significantly shortening the development cycle.

In short, the issue of battery cycle life involves the broad application of power and energy storage batteries, which differs from a single application requirement, making the cycle life distribution range wider. When enterprises face competition and market pressure, seeking long-life, low-cost battery solutions is critical. Modeling and simulation methods play an essential role in this process, accelerating the process of battery research and development.

What new requirements will the application of battery passport bring to battery design?

Battery passport requires disclosing battery materials, energy, life, and other information, which poses many challenges during the custom lithium battery pack design stage. To achieve goals such as vehicle driving range, it is necessary to increase the energy density of batteries under the constraints of quality and capacity, which is also the focus of enterprises. At the same time, the use of environmentally friendly materials and cost reduction are also design considerations, among which cobalt-free technology has become a representative innovation in the industry.

The European Battery Act has attracted widespread attention and requires the local recycling of battery materials, highlighting the importance of battery sustainability. This impacts battery material selection and manufacturing processes, requiring sustainability considerations to be considered throughout the entire life cycle. Batteries have a long life cycle, and sustainability needs to be viewed from design and manufacturing to multiple uses, disassembly, and recycling. For example, the welding and glue inside the battery are not friendly to disassembly, so design solutions for easy recycling will bring about design changes.

In addition to performance and cost, today’s businesses must consider sustainability an important metric. Launching the battery passport will increase the transparency of battery cell design and promote cooperation and experience sharing within the industry, thereby comprehensively considering energy efficiency, environmental impact, material sources, and life cycle management in the design and achieving a more sustainable battery design.

li-ion 18650 battery and Custom Lithium Battery Pack

 

Will the battery cell design configurations in the European market tend to be diversified or more uniform?

There has long been a structural controversy in the battery field, especially in large-scale batteries. People often hear discussions about the Unified Cell (unified cell) or 46 system. The area of energy storage batteries is relatively harmonious, with most batteries adopting a square winding hard shell system, especially the 71173 standard.

However, the diversity of structures is even more significant when it comes to power batteries. The structures of power batteries include square rolls, soft bags, blades cylinders, etc., with different shapes. Although the square roll configuration is still the mainstream, the other three structures also have their advantages. Especially for large cylindrical structures, such as the 46 series, the specifications continue to expand from 80, 95, 120, etc., and the capacity of a single battery develops from 3Ah to more than 30Ah or even higher. This structure is famous in the European market, and some OEMs support related power battery companies to create large cylindrical configurations.

The reason why the sizeable cylindrical configuration is popular is mainly reflected in two aspects: first, it continues the high efficiency of the winding production method; Secondly, when using the twisted cylindrical structure, it can better control the silicon content, The influence of factors such as high volume expansion materials on internal stress.

On the market, various configurations go hand in hand. Although some European and American companies have invested in Chinese power battery companies in the early stages, such as Volkswagen and Mercedes-Benz, there has yet to be a clear winner. Some companies have chosen soft-pack configurations, while others are moving towards large cylinders. Some companies have even proposed the concept of Unified Cell, which has the same appearance but different internal structure. This approach can reduce production diversity, such as coil production, casings, mechanical parts, etc.

To sum up, the choice of battery structure is still changing dynamically, and there is no clear winner yet. Similar to the situation in the Chinese market, this “let the bullets fly for a while” problem also exists in the European market. European and American companies’ investment and development strategies in Chinese battery companies and structure selection show that the market has not yet formed a clear consensus.

Himax Lifepo-12v-100ah battery

What changes can companies make on the R&D side to cope with new challenges and seize new opportunities?

The future development of the power battery industry will mainly focus on the two themes of reducing costs and improving efficiency. This is not a simple relationship from zero to one, but a process from one to one hundred about how to do better and faster based on the existing foundation. China is at the forefront in this regard, and the battery industry has entered a stage of high-quality development with an absolute size, slowing relative growth, but still full of vitality.

This also means the battery industry will maintain solid growth for some time. At this stage, accelerated development and cost reduction are crucial to the fate of the enterprise.

Among them, intelligent technology will bring revolutionary changes in the battery design and manufacturing field. Traditional battery design methods usually involve diverse sample preparation and testing processes, which wastes battery materials, staffing, and time.

Is there a new battery design method and corresponding design tools that can significantly shorten the design cycle from the traditional one year or even two years to a few weeks or months? A similar situation exists in battery manufacturing. Various wastes in the manufacturing process, such as yield issues, energy consumption, emissions, etc., must be addressed. Even when exploring new configurations, such as tab welding for large cylindrical batteries, long pole blades, etc., these problems still need to be faced.

Therefore, intelligent new design and manufacturing technologies will be the key to solving these challenges. From a design perspective, innovative technology can significantly shorten the design cycle and reduce waste. On the manufacturing side, intelligent technology can optimize factory management, improve production efficiency, reduce energy consumption and emissions, and even move towards the goal of green and zero-carbon factories.

In short, as China’s battery industry is about to enter a stage of high-quality development, intelligent technology will be a powerful tool to help companies accelerate growth and reduce costs. The introduction of this technology will have a positive impact in the field of battery design and manufacturing, pushing the industry towards a more efficient and sustainable direction.

12V Lead Acid Replacement Battery 150Ah

The impact of the new battery law on battery manufacturing

The battery passport contains information about some manufacturing segments. Does it pose more challenges or opportunities for battery production?

The newly promulgated battery passport regulations, involving battery labels and manufacturing information, provide a situation where opportunities and challenges coexist. Implementing a battery passport will help standardize the entire battery manufacturing, use, and recycling process and improve the regulation and efficiency of battery use. This will help monitor various parameters during custom lithium battery pack use, improving battery quality. This will have positive significance for regulating and developing the entire industry.

Are there any obvious differences in carbon emission performance between the front, middle and back stages of battery production?

Carbon emissions are relatively evenly distributed among the front, middle, and rear sections. The energy consumption involved in the entire manufacturing process, such as heating, cooling, chemical formation, or liquid injection, consumes energy. The continuity of the battery manufacturing process, from material design to manufacturing process, requires the control of energy consumption. Therefore, achieving improvements in carbon footprint requires a concerted effort from both battery materials and manufacturing technologies.

Himax Decorative Pictures - battery pro

Technical approaches to improve carbon footprint

Manufacturing technology has a significant impact on carbon footprint, especially in terms of improvements in manufacturing processes and processes. In a short time, energy consumption can be reduced by improving manufacturing processes and processes. At the same time, in the long term, it is necessary to optimize the entire manufacturing process, starting from the battery design and material system. For example, changing and optimizing the battery material system can reduce the energy consumption of the manufacturing process and thereby improve the carbon footprint.

The help and role of lithium battery equipment companies

From the perspective of custom lithium battery pack equipment manufacturers, equipment plays a vital role as executors and controllers in battery manufacturing. By establishing digital control and data systems, the equipment can help manufacturers optimize the manufacturing process and improve quality while also helping to solve the challenges of the new battery passport regulations.

 

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
li-ion 18650 battery

This article will tell you some relevant knowledge about low-temperature li ion customized battery packs.

In our daily life, the most battery we use are the common battery. But in some special field, the low-temperature custom lithium battery pack  is also used.

HIMAX is the manufacturer focusing on the li-ion battery pack manufacturing and Li ion customized battery manufacturing. We can provide the low-temperature 18650 battery pack and 12v lead acid replacement battery.

Li Ion Customized Battery Packs

 

Special low-temperature li ion customized battery packs are rechargeable battery suitable for low-temperature environments of-40°C. The battery is required to reach more than 80% of the rated capacity when discharged at 0.2C. The main feature is that it has sufficient capacity at low temperature and can work normally.

Generally, lithium-ion battery cannot be used normally when the ambient temperature is -20°C, while low-temperature lithium-ion battery can still be used normally at -50°C.

In addition to communication power supplies, mobile power supplies, signal power supplies, and small EV power supplies also require low-temperature battery when working in the field.

Low-temperature li ion customized battery packs have the advantages of light weight, high density and long life, and are widely used in various electronic devices. Among them, low-temperature polymer lithium-ion battery also have the advantages of simple packaging, easy to change the geometric shape, ultra-light and ultra-thin, and high safety, becoming the power source of many mobile electronic products.

Currently, the low-temperature lithium-ion battery with better performance on the market is lithium cobalt oxide lithium-ion battery. Low-temperature li ion customized battery packs have the following advantages:

(1) High discharge performance, with a minimum discharge rate of 0.2C at -50°C and an efficiency of over 60%; and a discharge capacity of 80% at a discharge rate of 0.2C at -40°C;

(2) Wide operating temperature range, -50°C to 50°C;

(3) Excellent low-temperature cycle performance, charge and discharge at -30°C at 0.5C, and the capacity remains above 85% after 300 cycles;

(4) The size is flexible and can be customized in size and shape according to customer needs.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Structure-Of-Aluminum-Shell-Battery

HIMAX can make custom lithium battery pack, let me introduce the lithium-ion battery materials:

Cathode material

Lithium cobalt oxide: 4.2V, 4.35V, 4.45V

Ternary materials (single crystal/polycrystal/precursor): NCM900505, NCM811, NCM622, NCM613, NCM523, NCM111, NCA, lithium niobate-coated NCM811

Lithium iron phosphate: P198, DY-3, XDNP01-2

Lithium iron manganese phosphate: LFMP64, LFMP73, M70 Lithium manganate, lithium vanadium phosphate, spinel lithium nickel manganate 5.0V and other materials

Structure Of Custom Lithium Battery Pack

Negative Electrode Material

Silicon carbon anode: Si/C-400, Si/C-500, Si/C-600, Si/C-650

Silicone carbon anode: SiO/C-420, SiO/C-450

Silica: 1580 capacity

Graphite negative electrode: artificial graphite AGP, artificial graphite S360, artificial graphite FSN-1, natural graphite 918-II, power type artificial graphite QE-1, power type artificial graphite QCG-X9, energy fast charging type artificial graphite QC8, low expansion rate Artificial graphite G49, etc.

Hard carbon anode: hard carbon for custom lithium battery pack, Kureray chemical hard carbon, Kuraray 509-5 (D50=5um), Kuraray 510-5 (D50=5um), spherical hard carbon, Kuraray type1, Kuraray type2

Lithium titanate, soft carbon, nano silicon 50nm, zinc foil and other materials

 

Electrolyte

Various electrolytes such as ternary material electrolyte, lithium-rich manganese-based electrolyte, lithium iron phosphate electrolyte, lithium cobalt oxide electrolyte, high voltage electrolyte, etc. can be prepared according to the specified formula or battery system.

 

Separator

Temini Super P Li, Japan Lion Ketjen Black ECP-600JD, Japan Lion Ketjen Black EC-300J, Temini KS-6, Temini SFG-6, acetylene black, single wall carbon nanotube slurry materials (water system/oil system), multi-walled carbon nanotube slurry, multi-walled carbon nanotube powder and other materials

 

Adhesive

American Solvay PVDF 5130, French Arkema PVDF HSV900, Japanese Daicel CMC 2200, Nippon Paper CMC MAC500LC, Japanese Zeon SBR BM-451b, JSR TRD104A, LA132, LA133, LA136D, LA136DL (lithiated polyacrylic acid bonded Agent PAA Li), PVP K30, PTFE and other materials

 

Current collector

Copper foil (single-gloss/double-gloss/double-coated), carbon-coated copper foil (single-sided/double-sided coating), aluminum foil (single-gloss/double-gloss), carbon-coated aluminum foil (single-sided/double-sided coating), microporous Copper foil, microporous aluminum foil, porous copper foil, porous aluminum foil, nickel foam, copper foam and other materials

 

Shells and other materials and tools

Button battery shell, aluminum plastic film, tabs, N-methylpyrrolidone (battery grade), asphalt, high temperature tape, cutting tools, soft pack battery test fixture, etc.

 

Sodium ion battery materials

Cathode material

Sodium vanadium phosphate, sodium nickel manganese oxide, sodium nickel ferromanganate 424, sodium nickel ferromanganate 111, sodium nickel ferromanganate O3A, sodium nickel ferromanganate P2B and other materials.

 

Negative electrode material

Kuraray Type2 hard carbon, Kuraray Type1 hard carbon, Kureha Chemical hard carbon, spherical hard carbon, NHC-B1, BSHC-300 and other materials

 

Electrolyte

Sodium vanadium phosphate electrolyte, sodium nickel ferromanganate semi-electrolyte, sodium nickel ferromanganate-hard carbon full electrolyte, sodium electrohard carbon electrolyte and other electrolytes can be prepared according to the specified formula or battery system

 

Separators

Whatman fiberglass separators (various specifications), special separators for sodium-ion batteries, etc.

 

Conductive agent

Temini Super P Li, Japan Lion Ketjen Black ECP-600JD, Japan Lion Ketjen Black EC-300J, Temini KS-6, Temini SFG-6, acetylene black, single wall carbon nanotube slurry materials (water system/oil system), multi-walled carbon nanotube slurry, multi-walled carbon nanotube powder and other materials

 

Adhesive

American Solvay PVDF 5130, French Arkema PVDF HSV900, Japanese Daicel CMC2200, Nippon Paper CMC MAC500LC, Japanese Zeon SBR BM-451b, JSR TRD104A, LA132, LA133, LA136D, LA136DL (lithiated polyacrylic acid binder PAA Li), PVP K30, PTFE and other materials

 

Current collector

Aluminum foil (single light/double light), carbon-coated aluminum foil (single-sided coating/double-sided coating) and other materials

 

Shells and other materials and tools

Button battery case, aluminum plastic film, tabs, N-methylpyrrolidone (battery grade), high temperature tape, cutting tools, soft pack battery test fixture, etc.

 

Nano-iron trioxide for batteries, nano-silica for batteries, nano-zinc oxide for custom lithium battery pack, nano-titanium dioxide for custom lithium battery pack, high-purity ultra-fine alumina for custom lithium battery pack, nano-aluminum hydroxide for lithium batteries, nano-alumina for lithium batteries, Nano-magnesium oxide for lithium batteries, nano-zirconia for lithium batteries.

 

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com