18650 Lithium Ion Battery Pac

Lithium ion battery is a common rechargeable battery type which is widely used in our daily life.

Lithium-ion batteries have higher energy density and better cycle life, so they are widely used in many application fields, such as electric vehicles, portable electronic devices, monitor, toys, etc.

Here are some susggestions when using lithium-ion batteries:

Charging: Use the recommended charger and charging cable and follow the manufacturer’s charging guidelines. Do not use inappropriate or inferior charging equipment to avoid problems such as overcharging, over-discharging or overheating.

Temperature control: Avoid exposing lithium ion battery to high or low temperatures. Excessively high temperatures will reduce battery life and may even cause safety issues. At the same time, battery performance will also be affected at low temperatures.

Himax - 18650 Li ion Battery 3.7V 45Ah

Avoid overcharging and discharging: Try to avoid charging and discharging lithium-ion batteries to the limit. Overcharging or overdischarging can negatively affect battery life. Use professional battery management systems or devices to monitor the charging and discharging process to ensure operations within a safe range.

Prevent physical damage: Lithium-ion batteries are relatively fragile and should be protected from physical damage such as impact, crushing, and bending to ensure their normal function and safety.

Water and Moisture Resistant: Lithium batteries are very sensitive to moisture. Avoid immersing the battery in water or exposing it to moisture to prevent safety risks such as battery performance degradation or circuit short circuits.

Storage conditions: When not in use for a long time, the lithium-ion battery should be charged to about 50% and stored in a dry, ventilated, and temperature-friendly environment to extend its life.

Please follow the instructions and recommendations provided by the manufacturer. If you have any questions or confusion about the use of lithium batteries, please consult the manufacturer for accurate guidance.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Charging at High and Low Temperatures(Article illustrations)

Environment: Lithium batterie charging and discharging operations need to be carried out in a ventilated environment with suitable temperature and humidity. This helps prevent adverse conditions such as overheating and humidity from affecting battery performance and safety. At the same time, the charging and discharging area should be far away from the core area, and independent fire partitions should be set up to reduce potential safety risks.

 

Temperature: Prevent charging and discharging lithium batterie in high or low temperature environments. High temperatures may cause thermal runaway of the battery, while low temperatures may affect the battery’s charge and discharge performance. In addition, the charging and discharging current of lithium batteries shall not exceed the maximum current indicated in the specification sheet.

 

Charger: Charging operations must use chargers that comply with relevant standards and specifications and are of reliable quality. The charger should have safety requirements such as short-circuit protection, braking power-off function, over-current protection function, and loss-of-control prevention function. In addition, the battery pack should use a charger with a balancing function to ensure that the charge status of each single cell in the battery pack is balanced.

 

Battery: Before charging and discharging, you must check whether the battery is qualified. This includes confirming whether the battery is damaged, deformed, leaking, smoking, leaking or other abnormal conditions. If there is any problem, charging and discharging operations are not allowed, and the battery must be disposed of safely in a timely manner.

 

Avoid overcharging and over-discharging: Avoid overcharging and over-discharging during lithium-ion battery charging and discharging operations. Overcharging may cause problems such as increased internal pressure of the battery and electrolyte leakage, while overdischarging may cause battery performance to decrease and shorten its lifespan. Therefore, the voltage and current during charging and discharging should be strictly controlled to ensure that the battery operates within a safe range.

 

Power supply: When charging and discharging lithium batteries, a power circuit that complies with relevant national electrical standards should be used to ensure the stability and safety of the power supply.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax Decorative Pictures - battery pro

In our technologically dependent society, the mobility, dependability, and safety of our devices—including phones and laptops—are critical. Just as important is our ability to easily charge and recharge these devices so they are available when we need them. To do this, we use rechargeable batteries, specifically lithium batterie.

They give us the freedom of movement and connectivity we need. As society’s needs evolve, so too does our tech, and so too must the batteries that allow us to use this tech. One of the most urgent concerns regarding lithium-ion batteries is their safety. Though rare, there are issues with explosions and fires caused by electrochemical system instability.

“Consequently, there is an urgent need to develop LIBs that can provide higher energy density, longer cycle life, and improved safety,” said Ying Bai, corresponding author of new research on this topic and a professor at the Beijing Institute of Technology in China.

Beijing scientists have been researching the use of additives in the sulfone-based electrolyte of  lithium batterie to improve their performance. They found that by adding triphenylphosphine oxide (TPPO), “the TPPO improves the thermal stability of the electrolyte, which has important industrial value and foundational significance of TPPO as an additive for advancing the development of LIB’s,” said Chuan Wu, co-corresponding author on the research and a professor at Beijing Institute of Technology.

The team’s paper is published in Energy Materials and Devices.

When lithium batterie is discharging lithium-ions, they move from an anode, which is an electrode where current enters the battery, through an electrolyte that passes through a separator to a cathode, which is where the current leaves the storage battery to energize a device. The path is reversed when recharging.

“In the composition of the battery, the non-aqueous electrolyte used in LIBs plays a crucial role in determining key performance parameters such as cycle life, power density, and efficiency,” said Ying Bai. Power density is a measure of stored power per volume, and cycle life is the number of charge/discharge cycles that a battery can undergo before it starts to decrease the percentage of charge it can hold.

18650 Li ion Battery 4400mah 10.8v-Lithium Batterie

The electrolyte solutions in use now have some issues with cycle stability, thermal stability, and safety. Rather than completely changing the electrolyte solution, the team chose to test the use of an additive, TPPO, in the electrolyte to improve the performance of the overall battery.

When tested, TPPO was found to have several important properties.

“Firstly, it reduces the flame point of the sulfone electrolyte; Secondly, it selectively forms a stable passivation film, enhancing the interface stability between the sulfone electrolyte and the electrode material,” said Chuan Wu. The passivation film forms as the TPPO decomposes and coats the cathode, rendering it more resistant to wear and tear, similarly reducing the electrolyte’s breakdown while enhancing the lithium ions’ movement across the electrolyte.

Using theoretical calculations, electrochemical characterization, and flammability tests, the researchers found “that the addition of 2 wt.% TPPO to the sulfone-based electrolyte significantly enhances the ionic conductivity within the temperature range of 20–60°C.”

“Additionally, it increases the discharge capacity of LIBs in the range of 2–4.8 V while maintaining excellent rate performance and cycling stability. Flammability tests and thermal gravimetric analysis (TGA) results indicate the excellent non-flammability and thermal stability of the electrolyte,” said Ying Bai.

In short, the new electrolyte that they have developed is safer as it is non-flammable, is thermally stable and has an increased energy discharge capacity.

More information: Qiaojun Li et al, Enhanced safety of sulfone-based electrolytes for lithium batterie: broadening electrochemical window and enhancing thermal stability, Energy Materials and Devices (2024). DOI: 10.26599/EMD.2023.9370022

Provided by Tsinghua University Press

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax - decorating image

We know that lithium batterie. But a NIMS research team has developed a new technique to image grain boundaries obstructing lithium-ion migration in solid-state batteries—a promising type of next-generation battery.

Solid-state batteries—next-generation rechargeable batteries—are intended to be safer and have higher energy densities than conventional lithium batterie by replacing liquid organic electrolytes with solid electrolytes. A major issue in current solid-state battery R&D is the obstruction of lithium-ion migration at the interfaces between active materials and solid electrolytes and at the grain boundaries within solid electrolytes.

These obstructions lower charge/discharge rates and reduce energy density in batteries. A solid electrolyte is composed of crystalline grains and the boundaries between them. Existing ionic conductivity evaluation methods had only been able to measure average ionic conductivity across a solid electrolyte and were unable to quantify ionic conductivity at individual grain boundaries and identify boundaries restricting ionic migration.

This research team succeeded in imaging and quantifying ionic migration/diffusion at individual grain boundaries within a solid electrolyte using secondary ion mass spectrometry (SIMS). SIMS enables the imaging of chemical element distribution across a solid electrolyte specimen by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions.

Li-ion-lithium batterie

The team first replaced a portion of a stable lithium isotope, 7Li (mass number: 7, natural abundance: 92%), constituting an electrolyte specimen with another lithium isotope, 6Li (mass number: 6, natural abundance: 8%), at the edge of the specimen using an isotope exchange technique.

The team then observed the diffusion of 6Li within the specimen using SIMS. Because it was impossible to image and quantify the distribution of fast-diffusing 6Li using conventional SIMS, the team significantly slowed 6Li diffusion by cooling the specimen (i.e., cryo-SIMS), enabling the team to precisely measure the 6Li distribution and identify grain boundaries acting as bottlenecks to ionic migration.

The cryo-SIMS technique can be used to directly observe lithium-ion diffusion, identify interfaces/grain boundaries acting as bottlenecks among the many interfaces/boundaries existing in a solid-state battery, and determine the causes of these obstructions. This approach is expected to contribute to the development of higher-performance solid-state batteries.

The work is published in the Journal of Materials Chemistry A.

More information: Gen Hasegawa et al, Visualization and evaluation of lithium diffusion at grain boundaries in Li0.29La0.57TiO3 solid electrolytes using secondary ion mass spectrometry, Journal of Materials Chemistry A (2023). DOI: 10.1039/D3TA05012B

Provided by National Institute for Materials Science

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
li-ion 18650 battery

The 18650 batteries pack is a type of lithium-ion battery with the model number 18650, which is mainly used for equipment and tools that provide high power output. Here are some features and applications about 18650 power lithium batteries:

Power output: 18650 power lithium batterieusually have large capacity and high power output capability, which can meet the needs of high energy consumption devices. They can provide reliable power supply and are suitable for power tools, electric vehicles, drones and other devices that require a large amount of energy output. Capacity and Voltage: The capacity of 18650 power lithium batteries varies between models, generally between 1000 milliamp hours (mAh) and 3500mAh. They often output at a standard voltage of 3.6V or 3.7V to provide stable power.

Charge and Discharge Performance: 18650 power lithium batteries have good charge and discharge performance and can absorb and release electrical energy quickly. They can complete charging in a shorter time and output power with high current, suitable for those devices with high demand for electrical energy.

Versatility: 18650 batteries pack are a common standard size battery, so they are easy to find on the market and use in a variety of devices that support the 18650 specification. This versatility makes 18650 batteries an option for a wide range of applications in many different fields for easy replacement and repair.

It is important to note that when using 18650 lithium batteries, you should follow proper charging and usage rules to avoid over-discharging and over-charging, as well as choosing reliable brands and suppliers that meet quality standards and certifications. This will ensure the performance and safety of the battery.

18650 Battery Pack 3.7V 35Ah

The difference between 18650 power lithium batteries and ordinary lithium batteries is mainly reflected in the following aspects:

Use: 18650 power lithium batteries are mainly used in high-power equipment and tools, such as power tools, electric vehicles and other equipment that requires a large amount of energy output. Ordinary lithium batteries are more often used in low-power electronic devices, such as alarm clocks, remote controls, torches and so on.

Capacity and power: 18650 power lithium batteries generally have a larger capacity and higher power output, which can provide longer use time and higher current output. Ordinary lithium batteries usually have smaller capacity and power.

Size and shape: 18650 lithium power battery is named after the specification size “18650” in its name, which has a diameter of about 18mm, a length of about 65mm, and is in cylindrical shape. Ordinary lithium batteries have a variety of specifications and shapes, such as cylindrical, square, flat and so on.

Charge and discharge performance: 18650 lithium power batteries usually have better charge and discharge performance, and can absorb and release electricity more quickly. The charging and discharging performance of ordinary lithium batteries is relatively weak.

It should be noted that different brands and models of batteries may differ in performance and characteristics, the above is the difference in general. When using batteries, you should choose the right type of battery according to the needs and recommended specifications of the equipment.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Li-ion-Vs-Lifepo4

In the realm of energy storage, lithium-ion (Li-ion) batteries have long dominated the market. However, in recent years, another contender has emerged – Lithium Iron Phosphate (LiFePO4) batteries. Both offer unique advantages and disadvantages, sparking debates among consumers, researchers, and industry experts. Before we dive into the comparison, let’s understand the fundamental differences between LiFePO4 and Li-ion batteries.

Li-ion Batteries

Lithium-ion batteries are widely used in various applications, ranging from smartphones to electric vehicles. They typically consist of a lithium-cobalt oxide (LiCoO2) cathode, a graphite anode, and an electrolyte solution. Li-ion batteries are known for their high energy density, lightweight design, and relatively low self-discharge rate.

 

LiFePO4 Batteries

On the other hand, Lithium Iron Phosphate batteries utilize a cathode made of iron phosphate (LiFePO4). This chemistry offers enhanced thermal and chemical stability compared to traditional Li-ion batteries. LiFePO4 batteries are renowned for their longevity, safety, and tolerance to high temperatures. Although they have a lower energy density compared to Li-ion batteries, they excel in terms of cycle life and safety.Deep Cycle 12V 150Ah LiFePO4 Batteries

 

Now, let’s compare LiFePO4 and Li-ion batteries across various parameters:

Energy Density

Li-ion batteries typically boast higher energy density compared to LiFePO4 batteries. This means they can store more energy per unit volume or weight. As a result, Li-ion batteries are favored in applications where compactness and lightweight design are crucial, such as smartphones and laptops.

Cycle Life

One of the key advantages of LiFePO4 batteries is their exceptional cycle life. They can endure a significantly higher number of charge-discharge cycles compared to Li-ion batteries. This makes them an ideal choice for long-term applications, including solar energy storage and electric vehicles.

Himax - LiFePO4-Batteries

Safety

Safety is a paramount concern in battery technology. LiFePO4 batteries have a stellar safety record due to their stable chemistry and resistance to thermal runaway. On the other hand, Li-ion batteries, particularly those with cobalt-based cathodes, are prone to overheating and potential thermal runaway under certain conditions.

Cost

Li-ion batteries have been mass-produced for decades, resulting in economies of scale that have driven down their cost considerably. LiFePO4 batteries, while becoming more competitive, still tend to be slightly more expensive due to the cost of raw materials and manufacturing processes.

Environmental Impact

From an environmental perspective, both LiFePO4 and Li-ion batteries have their pros and cons. LiFePO4 batteries contain no toxic heavy metals such as cobalt, which alleviates concerns regarding resource depletion and environmental pollution associated with cobalt mining. However, the extraction and processing of lithium and iron ores still pose environmental challenges. Additionally, both types of batteries require proper recycling methods to mitigate their environmental footprint.

12 volt lithium trolling motor battery
The choice between LiFePO4 and Li-ion batteries often depends on the specific requirements of the application:

  • Li-ion batteries are preferred in portable electronics, electric vehicles, and grid-scale energy storage systems where energy density and compactness are crucial.
  • LiFePO4 batteries find applications in stationary energy storage, renewable energy systems, and industries where safety and longevity are paramount considerations.

Li-ion-Vs-Lifepo4

In conclusion, both LiFePO4 and Li-ion batteries offer unique advantages and cater to different niches within the energy storage market. While Li-ion batteries excel in energy density and cost-effectiveness, LiFePO4 batteries shine in terms of safety, longevity, and environmental sustainability. As technology advances and manufacturing processes evolve, both battery chemistries are likely to continue improving, paving the way for a greener and more sustainable energy future.

 

Ready to power your next project with cutting-edge battery technology? Contact us today to explore how our advanced battery solutions can meet your specific needs.

Lithium batterie has become ubiquitous in our lives. I believe that many people have encountered the situation of lithium batterie can not be charged. Here, we will tell you some common reasons why lithium batterie can not be charged and how to deal with them.

 

  1. Poor connection of the battery charger: If the contact between the lithium batterie and the charger is poor, it will lead to the battery can not be charged. At this time, please check whether the contact between the battery and the charger plug is good, or replace the charger and battery to try.

 

  1. Incorrect battery polarity: If the battery is reversed into the charger, it will also result in the battery not charging. We should connect the positive terminal of the battery to the positive terminal of the charger and the negative terminal of the battery to the negative terminal of the charger.

 

  1. Faulty charger: A faulty charger will prevent the battery from charging. In this case, you need to replace the charger to solve the problem.

Fast-charging-lithium batterie

  1. Battery aging: If the lithium ion battery has been used for a long time, the capacity of the battery may have been reduced, the internal resistance of the battery may increase, these will lead to the battery can not be fully charged. At this time you need to replace the battery with a new one.

 

  1. Insufficient charging voltage: If the output voltage of the charger is insufficient, it will also lead to the battery can not be fully charged. At this time you need to check whether the output voltage of the charger meets the requirements of 18650 batteries pack.

 

In short, if the lithium battery can not be charged, we need to check the connection, polarity, charger, battery aging and many other factors, find the problem and repair or replace the device.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com

Lithium battery pack refers to the assembly and production of lithium batterie. Pack refers to the packaging, encapsulation and assembly of lithium batterie. The main process is divided into three major parts: processing, assembly and packaging. When several modules are controlled or managed together by BMS and thermal management system, this unified whole is called lithium battery pack.

Composition of lithium battery pack:

lithium ion battery packs are generally made up of a collection of several Li-ion battery cells, with the addition of a BMS, and connectors. Thus forming the final product provided by the battery pack manufacturer to the user. The li-ion battery pack has a variety of shell materials, such as PVC, aluminium shell, steel shell, ABS shell and so on.

lithium batterie

 

Lithium battery pack features:

  1. 1.Functional integrity and can be used directly.
  2. 2.Diversity, a demand for a variety of realisation.
  3. 3. Longer service life.
  4. 4. Each lithium batterie can give full play to the energy of the battery, safe and reliable.

At present, 18650 batteries pack is widely used in the consumer electronics market, covering exploration equipment, robots, mobile phones, laptops, game consoles, digital cameras, portable devices and so on.

HIMAX can make all kinds of custom lithium battery pack and 12v lead acid replacement battery for our customers. We have full of confidence to meet your quality level. Looking forward to build a long term business with you and we wait for your kind respond

Contact Himax now to unlock your exclusive battery customization options, Himax offers a wide range of options and flexible customization services to meet the needs of different users.
If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax Decorative figure

AGM replacement battery/marine battery/lithium batterie/battery replacement/Energy storage battery/ LiFePO4 battery bank are widely used in our daily life. And in some areas, like North America, North Europe, the temperature in winter is always lower than 32°F (0°C). How can they use the battery properly in winter, such as charging and discharging, below 32°F (0°C)? This is a practical problem that customers will meet.

Himax 12V 6000mAH lifepo4 battery

As we know, conventional lithium-ion batteries or LiFePO4 battery cannot be charged at temperature below 32°F (0°C).

Gladly, the heating film can help to solve this problem. When the temperature is below 32°F (0°C), the heating film will be turned on under charging conditions. During heating , the charger only supplies power for the heating film and it will not charge the battery. When battery heats up to 50°F (10°C), the BMS stops heating and the battery starts to charge. When storaging and discharging, the heating film neither works nor consumes battery power.

Currently, our 12V 100Ah/25.6V 100Ah/51.2V 100Ah LiFePO4 battery bank, or other AGM replacement battery can be equipped with a heating pad, which can help to solve the charging problem when temperature below 32°F (0°C).

HIMAX can make all kinds of custom lithium battery pack and 12v lead acid replacement battery for our customers. We have full of confidence to meet your quality level. Looking forward to build a long term business with you and we wait for your kind respond

Contact Himax now to unlock your exclusive battery customization options, Himax offers a wide range of options and flexible customization services to meet the needs of different users.
If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
LiTypes of Lithium-ion

Fundamental degradation mechanism of Ni-rich layered cathodes on li ion customized battery packs

Increasing of the Ni fraction increase the discharge capacity of the cathode but decreases the ability to retain its original capacity during cycling. The relatively inferior cycling stability of NCM with x > 0.8 is attributed to the phase transition near the charge-end. Stress stemming from the H2 to H3 phase transition destabilized the internal microcracks and allowed the microcracks to propagate to the surface, providing channels for electrolyte penetration and subsequent degradation of the exposed internal surfaces.

Concentration gradient cathode materials for advanced li ion customized battery packs

NCM cathodes with concentration gradients represent a viable solution that simultaneously addresses the specific energy density, cycling and chemical stability, and safety issues of Ni-enriched NCM cathodes. Currently, concentration gradient cathode with extremely high Ni content has been developed by X-doping. Interdiffusion and coarsening in the X-doped CG cathode were suppressed by the segregation of X at the grain boundary and particle surfaces, which also provided a protective coating layer that lowered the surface reactivity.

Microstructurally modified cathodes by high valence electron elements doping

Specific dopants, especially high-valence elements can change the morphology of primary particles in Ni-rich cathode materials. The introduction of a high- valence element during calcination effectively reduces the size of the grains and refines the morphology of primary particles into rod-shaped ones by inhibiting the coarsening of particles. The superior cycling stability clearly indicates the importance of the particle microstructure (i.e., particle size, particle shape, and crystallographic orientation) in mitigating the abrupt internal strain caused by phase transitions in the deeply charged state, which occur in Ni-rich layered cathodes.

Effects of low valence elements excess doping in microstructure

The grain size refinement can be achieved by the introduction of an excess amount of Al doping, which inhibits particle coarsening by segregating Al ions at the particle boundaries. A highly aligned microstructure is achieved by doping 4 mol% of Al, which can allow uniform contraction of the primary particles in the deeply charged state, preventing the formation of local stress concentrations, and deflecting the propagation of microcracks. The proposed Al 4mol%-doped NCA cathode represents a new breed of a Ni-rich NCA cathode that can meet the energy density required for the next-generation EVs without compromising the battery life and safety.

Li-ion

Advanced Co-free cathode

The elimination of Co from Ni-rich layered cathodes is considered a priority to reduce their material cost and for sustainable development of  li ion customized battery packs as Co is becoming increasingly scarce. In the Co-free cathode, the H2-H3 phase transition occurring near the charge end is shifted to a high voltage, so the capacity is lower than that of the NCM cathode at the standard operating voltage (4.3V). However, when operated at high voltage(4.4V), it shows improved thermal stability and cycling stability due to high Mn contents, while exhibiting capacity similar to that of NCM cathode.

Introducing High-Valence Elements into Co-free NM Cathodes(micro-, nano- structure enegineering)

By doping high-valence elements into the Co-free cathodes, the electrochemical performances of the cathodes can be further extended. The grain size refinement achieved by X-doping (X=high-valence element) dissipates the deleterious strain from abrupt lattice contraction through fracture toughening and the removal of local compositional inhomogeneities. Also, the unique structure induced by the presence of X stabilizes the delithiated structure through a pillar effect. The X-doped NM90 cathode can deliver a high capacity with cycling stability, and is suitable for the electric vehicles with long service life at a reduced material cost.

Source:

http://escml.hanyang.ac.kr/sub/sub01_02.php

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com