portable device decorate img

A sodium battery developed by researchers at The University of Texas at Austin significantly reduces fire risks from the technology, while also relying on inexpensive, abundant materials to serve as its building blocks.

Though battery fires are rare, increased battery usage means these incidents are on the rise.

The secret ingredient to this sodium battery breakthrough, published recently in Nature Energy, is a solid diluent. The researchers used a salt-based solid diluent in the electrolyte, facilitating the charge-discharge cycle. A specific type of salt—sodium nitrate—allowed the researchers to deploy just a single, nonflammable solvent in the electrolyte, stabilizing the battery as a whole.

Over time, the multiple liquid solvents in an electrolyte—the component that transfers charge-carrying ions between the battery’s two electrodes—react with other components in ways that degrade batteries and lead to safety risks. Sodium, an alternative to lithium that is one of the key ingredients in this battery, is highly reactive, posing a significant challenge to the adoption of these types of batteries. These reactions can lead to the growth of needle-like filaments called dendrites that can cause the battery to electrically short and even catch fire or explode.

“Batteries catch fire because the liquid solvents in the electrolyte don’t get along with other parts of the battery,” said Arumugam Manthiram, a professor in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering and the lead researcher on the project. “We have reduced that risk from the equation to create a safer, more stable battery.”

In addition to the safety improvement, this new, sodium-based battery represents a less expensive alternative to the lithium-ion batteries that power smartphones, laptops, electric cars and more.

Future Batteries(Article illustrations)-sodium battery

The battery also boasts strong performance. How long a battery lasts on a single charge tends to decline over time. The new sodium battery retained 80% of its capacity over 500 cycles, matching the standard of lithium-ion batteries in smartphones.

“Here we show a sodium battery that is safe and inexpensive to produce, without losing out on performance,” Manthiram said. “It is critical to develop alternatives to lithium-ion batteries that are not just on par with them, but better.”

Though the researchers applied this technique to a sodium battery, they said it could also translate to lithium-ion-based cells, albeit with different materials.

Lithium mining is expensive and has been criticized for its environmental impacts, including heavy groundwater use, soil and water pollution and carbon emissions. By comparison, sodium is available in the ocean, is cheaper and is more environmentally friendly.

Lithium-ion batteries typically also use cobalt, which is expensive and mined mostly in Africa’s Democratic Republic of the Congo, where it has significant impacts on human health and the environment. In 2020, Manthiram demonstrated a novel, cobalt-free lithium-ion battery.

This battery is also free of cobalt, as well as lithium. The other components are made of 40% iron, 30% manganese and 30% nickel.

Other authors on the paper are Jiarui He, Amruth Bhargav, Laisuo Su, Julia Lamb and Woochul Shin—all from the Cockrell School’s Materials Science and Engineering program and Texas Materials Institute—and John Okasinski of Argonne National Laboratory.

More information: Jiarui He et al, Tuning the solvation structure with salts for stable sodium-metal batteries, Nature Energy (2024). DOI: 10.1038/s41560-024-01469-y

Provided by University of Texas at Austin

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com

Compared to lithium batterie, Sodium-ion batteries still have a number of weaknesses that could be remedied by optimizing the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with scandium and magnesium.

The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes. Their research is published in the journal Advanced Materials.

Lithium batterie have the highest possible energy density per kilogram, but lithium batterie resources are limited. Sodium, on the other hand, has a virtually unlimited supply and is the second-best option in terms of energy density. Sodium-ion batteries (SIBs) would therefore be a good alternative, especially if the weight of the batteries is not a major concern, for example in stationary energy storage systems.

However, experts are convinced that the capacity of these batteries could be significantly increased by a targeted material design of the cathodes. Cathode materials made of layered transition metal oxides with the elements nickel and manganese (NMO cathodes) are particularly promising.

They form host structures in which the sodium ions are stored during discharge and released again during charging. However, there is a risk of chemical reactions which may initially improve the capacity, but ultimately degrade the cathode material through local structural changes. This has the consequence of reducing the lifetime of the sodium-ion batteries.

“But we need high capacity with high stability,” says Dr. Katherine Mazzio, who is a member of the joint research group Operando Battery Analysis at HZB and the Humboldt-Universität zu Berlin, headed by Prof Philipp Adelhelm. Spearheaded by Ph.D. student Yongchun Li, they have now investigated how doping with foreign elements affects the NMO cathodes.

Different elements were selected as dopants that have similar ionic radii to nickel (Ni 2+), but different valence states: magnesium (Mg 2+) ions or scandium ions (Sc 3+).

14.8V 4Ah Li Ion Customized Battery Packs-lithium batterie

Three years of experiments at BESSY II, PETRA III, and SOLARIS

To decipher the influence of the two elements, they had to carry out experiments at three different X-ray sources.

At BESSY II, they analyzed the samples using resonant inelastic X-ray scattering (RIXS) and X-ray absorption spectroscopy (XAS) in the soft and hard X-ray ranges; at PETRA III, they evaluated structural changes with X-ray diffraction (XRD) and pair distribution function analysis (PDF) with hard X-rays, and for more detailed insights on the element magnesium, they carried out additional soft XAS investigations at the PIRX beamline at SOLARIS.

“The results surprised us,” explains Mazzio. Although doping with scandium leads to fewer structural changes during the electrochemical cycle than doping with magnesium, it does not improve stability. “Until now, it was thought that suppressing phase transitions (and thus volume changes) would also improve the cathode material cycling performance over many cycles. But that’s not enough.”

Magnesium doping suppresses the oxygen redox reaction in NMO even more. This was also unexpected, as magnesium is known to trigger an oxygen redox reaction in layered manganese oxides. “We analyzed different Mg/Ni ratios in NMO and found that the oxygen redox reaction reaches a minimum at a ratio close to 1,” explains Mazzio.

“Only through a combination of advanced X-ray techniques could we show that it is more than just suppression phase transitions that are important for improving the long-term cycling behavior, but also the interplay between Ni and O redox activity dictate performance.”

More information: Yongchun Li et al, Competing Mechanisms Determine Oxygen Redox in Doped Ni–Mn Based Layered Oxides for Na‐Ion Batteries, Advanced Materials (2024). DOI: 10.1002/adma.202309842

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax - decorating image

A multi-institutional team of Chinese engineers has developed a proof-of-concept calcium-based battery that withstands 700 charge cycles at room temperature. In their paper published in the journal Nature, the group describes the challenges they addressed in developing the battery and what they have learned about the possible use of calcium-based batteries in consumer products in the future.

The current standard for rechargeable custom lithium battery pack used in consumer products is lithium. But because it is a rare material and has issues such as poor aging and the need to prevent overcharge, scientists have been looking for a suitable replacement. One such material is calcium, which is 2,500 times as abundant as lithium.

LiTypes of Lithium-ion-Li Ion Customized Battery Packs

Prior research has suggested rechargeable batteries based on calcium should be possible if problems can be resolved. One of the biggest challenges is finding suitable electrolyte and electrode materials that can provide stability and safety.

 

In this new effort, the researchers attempted to develop a useable, rechargeable, calcium–oxygen-based battery—prior research has suggested such pairings are likely to have the highest energy density of calcium-based batteries. Prior efforts to create batteries using this approach have run into problems with inactive discharge materials, and it has also been challenging to find electrolytes that can work with both calcium and oxygen.

To overcome these problems, the team in China created a new type of liquid electrolyte that works with both calcium and oxygen. This involved the use of a two-electron redox process and specific proportions of materials. The result was a battery that could be charged and recharged up to 700 times at room temperature.

The research team also incorporated their battery into flexible fibers which they wove into a textile, presenting the possibility of wearable consumer products. They acknowledge that the battery is still not efficient enough for use in commercial products, but they plan to continue their work to see if it can be improved.

More information: Lei Ye et al, A rechargeable calcium–oxygen battery that operates at room temperature, Nature (2024). DOI: 10.1038/s41586-023-06949-x

Journal information: Nature

© 2024 Science X Network

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Lithium-Ion-Battery

The constantly growing demand for energy storage is driving research and development in battery technology. The sodium-ion battery is a reliable and affordable replacement for li ion customized battery packs. The easy accessibility and availability of sodium make sodium-ion batteries more attractive and competitive.

By using elements that are abundant in the Earth and adjusting the phase growth of the layered oxide cathode, a long-cycle, high-energy sodium-ion battery has now been developed and validated at 165 Wh/kg with the collaboration of Dr. Qingsong Wang, junior group leader at the Chair of Inorganic Active Materials for Electrochemical Energy Storage.

“Our result shows that sodium-ion batteries are even more cost-effective and sustainable on an industrial scale than conventional li ion customized battery packs, which are based on iron phosphate chemistry,” says Wang.

Li Ion Customized Battery Packs

In the study, which has been published in Nature Energy by a team of scientists from the Universities of Bayreuth (Germany), Xiamen (China), Shenzhen (China), the Argon National Laboratory (U.S.) and the Physics Institute of the Chinese Academy of Sciences in Beijing (China), it is shown that the intergrowth structure can be adapted by controlling the charge depth. This allows a prismatic-type stacking state to be inserted evenly between the octahedral-type stacking states.

 

This helps to avoid neighboring octahedral-type stacking faults. Octahedral-type and prismatic-type refer to the geometric arrangement of atoms or ions in a crystal lattice. Octahedral-type means that the atoms or ions in a crystal are arranged in an arrangement that resembles an octahedron. Prismatic-type refers to an arrangement that resembles a prism.

“Our research is to analyze the anionic oxygen redox reaction as an energy enhancer of the layered oxide for the sodium ion cathode,” says Wang.

“It is important to develop a strategy to make this reaction reversible and stable. In the long term, the results of our research can make mid-range electric vehicles more affordable, as the batteries for them can then be produced more cheaply and with a longer service life.”

More information: Xiaotong Wang et al, Achieving a high-performance sodium-ion pouch cell by regulating intergrowth structures in a layered oxide cathode with anionic redox, Nature Energy (2024). DOI: 10.1038/s41560-023-01425-2

Journal information: Nature Energy

 

Himax - 4/5sc Sub C Ni-Mh

As we all know, many electric curtains on the market are battery-driven. As the market demand for electric curtains continues to expand, the demand for 18650 battery pack are also increasing. The batteries for electric curtains are very similar in appearance and size.

Currently, the batteries mainly used for electric curtains include 18650 lithium ion battery, 18650 lifepo4 battery, 18650 sodium ion battery, Ni-MH battery

Li ion customized battery packs, 18650 3S1P, 11.1V 2200mAh, 2600mAh, 2800mAh, 3000mAh, etc.

LiFePO4 lithium-ion battery, 18650 4S2P, 12.8V 2000mAh, 18650 12.8V 3000mAh, etc.

Sodium-ion battery pack, 18650 4S2P, 12.4V 2600mAh.

Himax - Battery Ni-Mh 2/3AA 1.2V and li-ion battery pack manufacturing

At present, sodium-ion battery is still in its infancy. Some customers have begun testing samples, and there should be greater feedback in the market in recent years. Sodium-ion batteries are also a new trend in the future development of the battery industry.

Ni-MH battery pack 12V, 10S1P 12V 2500mAh.

This type of battery has mature technology, various models to choose from, and the price is not expensive.

HIMAX makes different type of rechargeable battery for electric curtains.

Himax has now also begun to provide sodium-ion battery solutions to our customers to meet the needs of industry development. We have more than 10 years experience and we we got as high as 99% of satisfaction on quality in these years.

Your inquiries are warmly welcome.

Contact Himax now to unlock your exclusive battery customization options, Himax offers a wide range of options and flexible customization services to meet the needs of different users.
If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax All-Energy Australia Himax

In today’s fast-paced world, the demand for efficient and sustainable energy storage solutions is constantly on the rise. One of the most promising technologies in this field is the Sodium Na Ion Battery Pack. Let’s explore the benefits of this advanced energy storage solution and understand why it’s revolutionizing the way we power our devices and vehicles.

High Energy Density: Sodium Na Ion Battery Packs offer exceptionally high energy density, meaning they can store more energy in a smaller space. This makes them an excellent choice for devices that require compact yet powerful energy sources, such as electric vehicles and portable electronic devices.

Extended Lifespan: With proper care and use, Sodium Na Ion Battery Packs can last for hundreds of charge-discharge cycles, significantly longer than many other types of batteries. This ensures longer-lasting performance and reduces the need for frequent replacements, saving time and money.

Fast Charging: Sodium Na Ion Battery Packs can be charged quickly, significantly reducing charging times compared to other batteries. This is particularly beneficial for electric vehicles, where quick charging can enhance the driving experience and reduce the time spent stationary charging.

Future Batteries(Article illustrations)- Na Ion Battery Pack

 

Environmentally Friendly: Unlike some traditional batteries that contain harmful substances, Sodium Na Ion Battery Packs are environmentally friendly. They are safe to dispose of and are composed of materials that are easily recyclable, making them more sustainable and eco-friendly.

Scalability: Sodium Na Ion Battery Packs can be scaled up or down depending on the application, providing flexibility in terms of power and capacity requirements. This allows for efficient customization to fit the needs of various devices and systems.

Durability: The robust design of Sodium Na Ion Battery Packs makes them highly durable and resilient to harsh conditions. They can withstand extreme temperatures, vibrations, and other challenging environmental factors, making them suitable for use in various industrial, automotive, and aerospace applications.

In conclusion, the Sodium Na Ion Battery Pack offers a range of remarkable benefits that make it a highly suitable energy storage solution for a variety of applications. Its high energy density, extended lifespan, fast charging capabilities, environmental friendliness, scalability, and durability provide unprecedented performance in powering our devices and vehicles efficiently and sustainably. As the demand for clean and efficient energy storage solutions continues to grow, the Sodium Na Ion Battery Pack is set to play a pivotal role in meeting these demands and shaping a brighter energy future.

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax - 18650 Battery Pack for Solar

In recent years, compared to li ion customized battery packs, sodium-ion batteries have continued to develop in the industry and are now gradually being put into use.

 

What are the outstanding advantages of sodium-ion batteries compared with li ion customized battery packs?

According to current industry test data analysis, sodium-ion batteries not only have better safety, but are more cold-resistant than li ion customized battery packs when encountering low temperatures of -40°C.

 

Sodium-ion batteries have no over-discharge characteristics, allowing sodium-ion batteries to discharge to zero volts. The energy density of sodium-ion batteries is greater than 100Wh/kg, which is comparable to lithium iron phosphate batteries. However, its cost advantage is obvious, and it is expected to replace traditional lead-acid batteries in the large-scale energy storage industry.

Himax - Solar street light battery-Li Ion Customized Battery Packs

The working principle of sodium-ion batteries is the same as that of lithium-ion batteries, and the existing production equipment of lithium ion battery companies can be directly used to produce sodium-ion batteries. Since there is basically no equipment investment, it is easy for companies to produce them as alternative batteries.

 

Although the energy density of sodium-ion batteries is not as high as lithium-ion batteries, due to the abundant Na resources and easy availability, and the current high price of lithium carbonate, Na-ion batteries still have very broad application prospects in the long run. It still has application prospects in some fields that do not require high energy density, such as grid energy storage, peak shaving, wind power energy storage, etc.

 

Himax has now also begun to provide sodium-ion battery solutions to our customers to meet the needs of industry development.

 

Your inquiries are warmly welcome.

Contact Himax now to unlock your exclusive battery customization options, Himax offers a wide range of options and flexible customization services to meet the needs of different users.
If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Himax - Li-Ion-4s-14.8v-Battery

While 18650 lithium ion battery pack currently dominate the industry, serious concern remains about the limited availability of lithium used in these batteries. Conversely, sodium-ion batteries provide a more sustainable alternative due to the tremendous abundance of salt in our oceans, thereby potentially providing a lower-cost alternative to the rapidly growing demand for energy storage.

Currently most sodium-ion batteries contain a liquid electrolyte, which has a fundamental flammability risk. In contrast, Sodium (Na) Super Ionic Conductor (NASICON) materials are non-flammable solid-state electrolytes with high ionic conductivity and superior chemical and electrochemical stability.

Researchers within the University of Maryland’s A. James Clark School of Engineering, have now developed a NASICON-based solid-state sodium battery (SSSB) architecture that outperforms current sodium-ion batteries in its ability to use sodium metal as the anode for higher energy density, cycle it at record high rates, and all with a more stable ceramic electrolyte that is not flammable like current liquid electrolytes.

18650 Lithium Ion Battery Pack

Dr. Eric Wachsman, Distinguished University Professor and Director of the Maryland Energy Innovation Institute notes, “Sodium opens the opportunity for more sustainable and lower cost energy storage while solid-state sodium-metal technology provides the opportunity for higher energy density batteries. However, until now no one has been able to achieve the high room temperature solid-state sodium-metal cycling rates we have achieved here.”

The unique 3D electrolyte architecture was recently published in Energy & Environmental Science and provides the promise of high energy density and commercially viable solid-state sodium batteries. The successful demonstration of both stable sodium cycling at high current densities and full cell cycling with thin 3D structured ion-conducting NASICON solid-electrolytes are a significant advancement towards sustainable and more economical energy storage technology.

More information: Prem Wicram Jaschin et al, High-rate cycling in 3D dual-doped NASICON architectures toward room-temperature sodium-metal-anode solid-state batteries, Energy & Environmental Science (2023). DOI: 10.1039/D3EE03879C

Journal information: Energy & Environmental Science

If you have any question, please feel free to contact us:

  • Name: Dawn Zeng (Director)
  • E-mail address: sales@himaxelectronics.com
Future Batteries(Article illustrations)

Most future batteries function wonderfully in a theoretical world, but many fail to meet the eight basic requirement of the so-called Octagon Battery. Short cycle life and limited load currents often prevent commercialization of the breakthroughs. While futuristic batteries may find a niche market, many never step outside the lab and see the light of day, not to mention advance to power the electric powertrain. This touches with emotions and is as far as the battery can go.

Chemistry Lithium-air Lithium-metal Solid-state Lithium Lithium-sulfur
Li-S
Sodium-iron
Na-ion
Type Air cathode with lithium anode Lithium anode; graphite cathode Lithium anode; polymer separator Lithium anode; sulfur cathode Carbon anode; diverse cathodes
Voltage per cell 1.70–3.20V 3.60V 3.60V 2.10V 3.6V
Specific Energy 13kWh/kg theoretical) 300Wh/kg 300Wh/kg (est.) 500Wh/kg or less 90Wh/kg
Charging Unknown Rapid charge Rapid charge 0.2C (5h) Unknown
Discharging Low power; inferior when cold High power band Poor conductivity when cold High power (2,500W/kg) Unknown
Cycle life 50 cycles in labs 2,500 100, prototypes 50, disputed 50 typical
Packaging Not defined Not defined Prismatic Not defined Not defined
Safety Unknown Needs improvement Needs improvement Protection circuit required Safe; shipment by air possible
History Started in 1970s; renewed interest in the 2000s. R&D by IBM MIT, UC, etc. Produced in the 1980s by Moli Energy; caused safety recall Similar to Li-polymer that started in 1970 New technology; R&D by Oxis Energy, Bosch and others. Ignored in the 1980s in favor
of lithium; has renewed interest
Failure modes Lithium peroxide film stops electron movement with use. Air impurity causes damage. Dendrite growth causes electric short with usage Dendrite growth causes electric short; poor low temperature. performance Sulfur degrades with cycling; unstable when hot, poor conductivity Little research in this area
Applications Not defined; potential for EV EV, industrial and portable uses EES, wheeled mobility; also talk about EV Solar-powered airplane flight in August 2008 Energy storage
Comments Borrowed from “breathing” zinc-air and fuel cell concept Good capacity, fast charge and high power keep interest high Similar to lithium-metal; may be ready by 2020; EVs in 2025 May succeed Li-ion due to lower cost and higher capacity Low cost in par with lead acid. Can be fully discharged.

Table 1: Summary of most common future batteries. Readings are estimated and may vary with different versions and newer developments. More information on BU-212: Future Batteries. Readings are estimated and may vary with newest development.