Future Batteries(Article illustrations)

Sodium (Na), which is over 500 times more abundant than lithium (Li), has recently garnered significant attention for its potential in sodium-ion battery technologies. However, existing sodium battery face fundamental limitations, including lower power output, constrained storage properties, and longer charging times, necessitating the development of next-generation energy storage materials.

A research team led by Professor Jeung Ku Kang from the Department of Materials Science and Engineering has developed a high-energy, high-power hybrid sodium-ion battery capable of rapid charging.
This research, co-authored by KAIST doctoral candidates Jong Hui Choi and Dong Won Kim, was published in the journal Energy Storage Materials with the title “Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface-area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages.”
The innovative hybrid energy storage system integrates anode materials typically used in batteries with cathodes suitable for supercapacitors. This combination allows the device to achieve both high storage capacities and rapid charge-discharge rates, positioning it as a viable next-generation alternative to lithium batteries.
However, the development of a hybrid battery with high energy and high power density requires an improvement to the slow energy storage rate of battery-type anodes as well as the enhancement of the relatively low capacity of supercapacitor-type cathode materials.

portable device decorate img

To account for this, Professor Kang’s team utilized two distinct metal-organic frameworks for the optimized synthesis of hybrid batteries. This approach led to the development of an anode material with improved kinetics through the inclusion of fine active materials in porous carbon derived from metal-organic frameworks.

Additionally, a high-capacity cathode material was synthesized, and the combination of the cathode and anode materials allowed for the development of a sodium-ion storage system optimizing the balance and minimizing the disparities in energy storage rates between the electrodes.

The assembled full cell, comprising the newly developed anode and cathode, forms a high-performance hybrid sodium-ion energy storage device. This device surpasses the energy density of commercial lithium-ion batteries and exhibits the characteristics of supercapacitors’ power density. It is expected to be suitable for rapid charging applications ranging from electric vehicles to smart electronic devices and aerospace technologies.

Professor Kang noted that the hybrid sodium-ion energy storage device, capable of rapid charging and achieving an energy density of 247 Wh/kg and a power density of 34,748 W/kg, represents a breakthrough in overcoming the current limitations of energy storage systems. He anticipates broader applications across various electronic devices, including electric vehicles.

More information: Jong Hui Choi et al, Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages, Energy Storage Materials (2024). DOI: 10.1016/j.ensm.2024.103368

Provided by The Korea Advanced Institute of Science and Technology (KAIST)

solar 12V lfp battery

Understanding the ampere capacity of a 12-volt battery is essential for anyone using such batteries across various applications—from vehicles to renewable energy systems. At Himax Electronics, we delve deep into battery specifications to ensure our customers are well-equipped to make informed decisions.

Introduction to Battery Capacity

Battery capacity, measured in ampere-hours (Ah), is key in determining how long a battery will last under specific conditions. This measure indicates how much current a battery can supply over a period of time before it needs recharging.

Understanding Ampere-Hours

Definition and Relevance: Ampere-hours quantify the charge capacity of a battery. A 12-volt battery with a 100 Ah rating can, in theory, deliver 5 amps for 20 hours or 10 amps for 10 hours under ideal conditions.

Practical Impact: Actual ampere-hours can vary based on factors including battery age, discharge rate, and operating temperature.

Factors Influencing Battery Capacity

Battery Chemistry:

Lead-Acid: Includes flooded, gel, and AGM types, each with different performance characteristics and maintenance needs.

Lithium-Ion: Higher energy density and efficiency, ideal for demanding applications but generally more costly.

Environmental Conditions:

Temperature: Battery performance can decrease in cold temperatures and increase in hot due to the speed of chemical reactions.

Discharge Rate: The faster a battery discharges, the less total capacity it provides, due to the Peukert effect.

Latest Battery Technology Update

The battery industry has seen significant advancements in recent years, particularly with the introduction of solid-state batteries. These batteries promise higher energy density, faster charging times, and increased safety due to their lack of liquid electrolytes. Companies like Toyota and QuantumScape are at the forefront of developing this technology, which could revolutionize how energy is stored in batteries.

Case Study: Solar Power Systems

Background:

A residential solar power system typically includes several 12-volt batteries wired together to store energy collected during the day for use at night or during cloudy weather.

Problem:

Homeowners need to ensure their battery system can handle the energy demands of all household appliances without frequent recharging.

Solution:

By using high-capacity 12-volt batteries with a 100 Ah rating, the homeowner can store sufficient energy to power lighting, appliances, and heating systems throughout the night. Advanced lithium-ion batteries provide a more efficient storage solution, reducing the physical footprint and maintenance requirements compared to traditional lead-acid batteries.

Outcome:

The homeowner achieves greater energy independence and reduced utility costs, thanks to the efficient and reliable battery system optimized for high discharge rates and long service life.

Calculating Required Amps

Total Demand Calculation: Sum the amp draw of all devices that the battery will power.

Usage Duration: Multiply total amps by the number of hours the devices will run to calculate total ampere-hours needed.

Extending Battery Life and Efficiency

Maintenance Tips: Regularly clean battery terminals, check for proper charge levels, and avoid deep discharges.

Charging Strategies: Use a charger that matches the battery type to optimize charging cycles and prolong battery life.

lifepo4 solar battery 12v

 

Conclusion

The ampere capacity of a 12-volt battery is a critical factor in determining its suitability for various applications. With advancements in battery technology and proper calculation and maintenance, users can maximize the efficiency and lifespan of their batteries. Visit Himax Electronics for more insights and support in selecting the right battery.

Lithium iron phosphate battery 12v

Testing a 12-volt battery with a multimeter is an essential skill for any individual working with automotive, marine, or solar power systems. A multimeter can provide invaluable insights into the battery’s health and charge state, helping you make informed decisions about battery maintenance and management. This comprehensive guide from Himax Electronics will help you master the technique, ensuring your batteries maintain optimal performance and longevity.

Understanding the Importance of Battery Testing

Regular battery testing is crucial for several reasons:

Preventive Maintenance: Early detection of potential battery failures can save costs on replacements and avoid unexpected downtimes.

Performance Optimization: Regular testing ensures that a battery is operating at its optimal performance, which is vital for the efficiency of electronic systems.

Safety: Testing helps identify issues that could lead to battery malfunctions, which in some cases could result in safety hazards.

Tools Needed

Multimeter: A digital multimeter with the capability to measure DC voltage is preferred for its accuracy and ease of use.

Safety Gear: Gloves and protective eyewear to ensure safety from battery acid and electrical sparks.

Preparing for the Test

Safety First: Ensure the area is well-ventilated. Batteries can emit hazardous gases.

Check Multimeter Setting: Set your multimeter to the DC voltage scale. This setting is usually denoted by a ‘V’ with a straight line.

Inspect Battery and Clean Terminals: Check the battery for any signs of damage or leakage. Clean the terminals using a wire brush to remove any corrosion, ensuring reliable test results.

Step-by-Step Guide to Testing Your Battery

Connect the Multimeter:

Secure the multimeter’s red probe to the battery’s positive terminal and the black probe to the negative terminal.

Make sure connections are firm to avoid fluctuating readings.

Reading the Voltage:

A stable reading should appear on the multimeter. For a 12-volt battery, a reading between 12.6 to 12.8 volts indicates a fully charged state.

Record the voltage when the battery is both at rest and under load to understand how it performs during actual usage.

Interpreting the Results:

12.6 volts or higher: Indicates the battery is healthy and fully charged.

12.0 to 12.5 volts: Shows a battery in a fair state but possibly in need of charging.

Below 12.0 volts: Suggests a discharged or failing battery that requires further testing or replacement.

Advanced Testing: Load Testing

For a more comprehensive analysis, performing a load test can be crucial:

What is Load Testing?: This test simulates the battery’s performance under typical operating conditions.

Procedure: Apply a specific load to the battery and measure voltage response. A significant drop in voltage could indicate a weak battery.

Maintenance Tips Post-Testing

Charging: If the battery is undercharged, use a suitable charger to restore it to full capacity. Himax Electronics offers advanced charging solutions that optimize battery health.

Regular Monitoring: Set a schedule for regular battery tests to monitor its health and performance over time.

Consult Experts: For batteries showing consistent underperformance, consulting with a battery expert can provide insights into potential issues or recommend replacements.

Conclusion

Mastering the use of a multimeter to test a 12-volt battery is a valuable skill that enhances your ability to maintain and troubleshoot battery-powered systems effectively. At Himax Electronics, we are committed to providing our customers with not only the tools but also the knowledge to ensure their equipment runs safely and efficiently. For more detailed guides, professional advice, and quality testing equipment, visit us at Himax Electronics.

12V lifepo4 battery pack

In the world of batteries, understanding the state of charge is critical for maintaining their longevity and efficiency. A 12-volt battery, commonly used in cars, boats, and solar panel systems, is a staple in various applications. Knowing what voltage it should read when fully charged not only helps in maximizing its utility but also ensures the safety and operational reliability of the device it powers.

Introduction to 12 Volt Batteries

A 12-volt battery is often referred to as a lithium battery, which is one of the most prevalent types used in automotive and solar applications.

Despite the name, a s rd 12-volt battery will typically provide a slightly higher voltage when fully charged.

This characteristic is crucial for the proper functioning of the battery and the equipment it operates.

Understanding Voltage and Charge Levels

Voltage in a battery is like a snapshot of its health and charge level. For a 12-volt LiFePO4 battery, the fully charged voltage and the state of discharge go hand in hand:

12.8 volts and above: At rest (no load condition and no recent charging), a reading of 14.2 volts or more usually indicates a fully charged battery.

13.3 volts: Represents about 75% charge and is sufficient for most operational needs.

13.2 volts: Shows about 50% charge, a critical midpoint where you might want to consider recharging to avoid deep discharge states.

 

Charging to Full Capacity

Ensuring that a 12-volt battery reaches its optimal charge level involves not only using the right charger but also understanding the charging process:

 

Stage1: Bulk Charge – This stage brings the battery up to approximately 80% of its full capacity by applying a high charge rate. Voltage gradually increases while closely monitoring the temperature to prevent overheating.

Stage 2: Absorption Charge – The charger reduces the current and allows the voltage to reach its peak at around 14.4 to 14.8 volts for a typical lead-acid battery. This stage completes the charging up to near 100%.

Stage 3: Float Charge – Finally, the charger lowers the voltage and provides a small current to keep the battery at 100% charge without overcharging it. The voltage in this stage should be about 13.6 to 13.8 volts.

Maintaining Your Battery

Proper maintenance of a 12-volt battery is essential for extending its life and ensuring it consistently performs well:

Regular Checking: Frequent voltage checks with a reliable multimeter can prevent overcharging or deep discharge, which are detrimental to battery health.

Clean Connections: Ensure that the battery terminals are clean and corrosion-free to provide good electrical connectivity.

Proper Storage: When not in use, store the battery in a cool, dry place and periodically charge it to keep it from entering a deep discharge state.

Conclusion

Knowing what a fully charged 12-volt battery should read is vital for anyone relying on battery-powered equipment. With proper understanding and maintenance, you can ensure that your 12-volt batteries serve you well for years to come.

Whether you’re a boating enthusiast, a car owner, or manage a bank of solar batteries, keeping the battery fully charged and well-maintained is your key to uninterrupted power supply and operational efficiency.

24v 100ah lifepo4 battery pack

Recreational Vehicle (RV) batteries/ lifepo4 battery are one of the most important things you take with you on the road when you travel. After all, they’re largely the reason that you get from Point A to Point B.

Some essential benefits deep cycle lithium batteries have over lead-acid for your RV include: Less than half the weight. Offer much higher usable capacity at the same amp-hour. Fully charged up to 6x faster.

Lifepo4 battery is safer than AGM batteries. They are less prone to overheating and catching fire, which is a common issue with AGM batteries. Additionally, Lifepo4 batteries are more stable, which means they are less likely to explode if they are damaged.

oem lifepo4 solar battery 12v 80ah

If your upfront budget is lower, an AGM battery may be a better option as they are cheaper to buy. However, because a lithium battery offers a longer lifespan, it will usually be more economical in the long run.

In most cases you can swap out your RV’s AGM / lead-acid battery with a more economical, safer, and longer lasting lithium RV battery. You’ll just need to ensure your RV has a charging profile for lithium batteries.

HIMAX can make all kinds of custom lithium battery pack and 12v Lead Acid Replacement Battery for our customers. We have full of confidence to meet your quality level. Looking forward to build a long term business with you and we wait for your kind respond
Contact Himax now to unlock your exclusive battery customization options, Himax offers a wide range of options and flexible customization services to meet the needs of different users.
If you have any question, please feel free to contact us:
Name: Dawn Zeng (Director)
E-mail address: sales@himaxelectronics.com

The pursuit of greener energy also requires efficient rechargeable batteries to store that energy. While lithium-ion batteries are currently the most widely used, all-solid-state sodium batteries are attracting attention as sodium is far more plentiful than lithium. This should make  sodium battery less expensive, and solid-state batteries are thought to be safer, but processing issues mean mass production has been difficult.

 

Osaka Metropolitan University Associate Professor Atsushi Sakuda and Professor Akitoshi Hayashi, both of the Graduate School of Engineering, led a research team in developing a process that can lead to mass synthesis for sodium-containing sulfides. The results were published in Energy Storage Materials and Inorganic Chemistry.

 

Using sodium polysulfides (sulfides with two or more atoms of sulfur) as both the material and the flux, which promotes fusion, the team created a solid sulfide electrolyte with the world’s highest reported sodium ion conductivity—about 10 times higher than required for practical use—and a glass electrolyte with high reduction resistance.

portable device decorate img

Mass synthesis of such electrolytes with high conductivity and formability is key to the practical use of all-solid-state sodium battery.

 

“This newly developed process is useful for the production of almost all sodium-containing sulfide materials, including solid electrolytes and electrode active materials,” Professor Sakuda said.

 

“Also, compared to conventional methods, this process makes it easier to obtain materials that display higher performance, so we believe it will become a mainstream process for the future development of materials for all-solid-state sodium batteries.”

 

More information: Akira Nasu et al, Utilizing reactive polysulfides flux Na2S for the synthesis of sulfide solid electrolytes for all-solid-state sodium batteries, Energy Storage Materials (2024). DOI: 10.1016/j.ensm.2024.103307

 

Tomoya Otono et al, High-Sodium-Concentration Sodium Oxythioborosilicate Glass Synthesized via Ambient Pressure Method with Sodium Polysulfides, Inorganic Chemistry (2024). DOI: 10.1021/acs.inorgchem.3c04101

Journal information: Inorganic Chemistry

Provided by Osaka Metropolitan University

If you have any question, please feel free to contact us:
Name: Dawn Zeng (Director)
E-mail address: sales@himaxelectronics.com
Himax Decorative Pictures - battery pro

A solid-state battery is a battery that uses solid electrodes and solid electrolytes. Solid-state batteries generally have lower power density and higher energy density. Because solid-state batteries have a relatively high power-to-weight ratio, they are an ideal battery for electric vehicles. What is the difference between solid-state batteries and lithium ion battery?

The main difference between solid-state batteries and lithium ion battery is the electrolyte. The electrolyte of lithium ions is liquid and exists in the form of gels and polymers, making it difficult to reduce the weight of the battery. In addition, a single lithium ion battery cell does not have high energy, so multiple battery cells must be connected in series and parallel, further increasing the weight. The cost of engineering, manufacturing and installing the battery pack accounts for a large proportion of the overall cost of an electric vehicle.

In addition to weight issues, the electrolyte of lithium-ion batteries is flammable, unstable at high temperatures, and has thermal runaway problems. In the event of a car accident, a serious fire may result. The electrolytes of the batteries also tend to freeze at low temperatures, which will reduce the battery life. In addition, the electrolyte will corrode the internal components of the battery, and the charging and discharging process will also produce dendrites, reducing the battery’s capacity, performance and lifespan.

Himax - 18650 Li-ion Battery 3.7V 45Ah

Instead of a liquid electrolyte inside a solid-state battery, there is a solid electrolyte in the form of glass, ceramic, or other materials. The overall structure of solid-state batteries is similar to traditional lithium-ion batteries, and the charging and discharging methods are also similar. However, because there is no liquid, the battery is more compact inside, smaller in size, and has increased energy density.

If the lithium-ion battery in an electric vehicle is replaced by a solid-state battery of the same size, the capacity can theoretically be increased by more than 2 times.

Moreover, solid-state lithium batteries are lighter in weight and do not require the monitoring, cooling and insulation systems of lithium-ion batteries. The chassis can free up more space for batteries, greatly increasing the endurance of electric vehicles.

In addition, solid-state batteries charge faster than lithium-ion batteries, have no corrosive problems, and have a longer life. Regarding the operating temperature, solid-state batteries are thermally stable and will not freeze at low temperatures. For users living in mid-to-high latitudes, this can ensure the endurance of electric vehicles.

The technical problem currently encountered by solid-state batteries is that the durability of the batteries is insufficient. Because the battery will repeatedly expand and contract during charging and discharging, causing the solid electrolyte to crack and causing the battery to have a short life.

Overall, solid-state battery technology is still in the transition stage from mature technology to industrialization, and it still needs lower material prices, process improvements, and a more stable supply chain system. The advancement of solid-state battery technology will be a gradual process. At present, lithium batteries will still be the mainstream batteries in va

18650 Lithium Ion Battery Pack 14.8V 12Ah

Scientists have discovered a stable and highly conductive lithium-ion conductor for use as solid electrolytes for solid-state lithium ion battery. All-solid-state lithium ion battery with solid electrolytes are non-flammable and have higher energy density and transference numbers than those with liquid electrolytes. They are expected to take a share of the market for conventional liquid electrolyte Li-ion batteries, such as electric vehicles.
However, despite these advantages, solid electrolytes have lower Li-ion conductivity and pose challenges in achieving adequate electrode-solid electrolyte contact. While sulfide-based solid electrolytes are conductive, they react with moisture to form toxic hydrogen disulfide. Therefore, there’s a need for non-sulfide solid electrolytes that are both conductive and stable in air to make safe, high-performance, and fast-charging solid-state Li-ion batteries.
In a recent study published in Chemistry of Materials on 28 March 2024, a research team led by Professor Kenjiro Fujimoto, Professor Akihisa Aimi from Tokyo University of Science, and Dr. Shuhei Yoshida from Denso Corporation, discovered a stable and highly conductive Li-ion conductor in the form of a pyrochlore-type oxyfluoride.
According to Prof. Fujimoto, “Making all-solid-state lithium-ion secondary batteries has been a long-held dream of many battery researchers. We have discovered an oxide solid electrolyte that is a key component of all-solid-state lithium-ion batteries, which have both high energy density and safety. In addition to being stable in air, the material exhibits higher ionic conductivity than previously reported oxide solid electrolytes.”

The pyrochlore-type oxyfluoride studied in this work can be denoted as Li2-xLa(1+x)/3M2O6F (M = Nb, Ta). It underwent structural and compositional analysis using various techniques, including X-ray diffraction, Rietveld analysis, inductively coupled plasma optical emission spectrometry, and selected-area electron diffraction.
Specifically, Li1.25La0.58Nb2O6F was developed, demonstrating a bulk ionic conductivity of 7.0 mS cm⁻¹ and a total ionic conductivity of 3.9 mS cm⁻¹ at room temperature. It was found to be higher than the lithium-ion conductivity of known oxide solid electrolytes. The activation energy of ionic conduction of this material is extremely low, and the ionic conductivity of this material at low temperature is one of the highest among known solid electrolytes, including sulfide-based materials.

Himax - 14.8v-2500mAh 18650 battery pack
Even at –10°C, the new material has the same conductivity as conventional oxide-based solid electrolytes at room temperature. Furthermore, since conductivity above 100 °C has also been verified, the operating range of this solid electrolyte is –10 °C to 100 °C. Conventional lithium-ion batteries cannot be used at temperatures below freezing. Therefore, the operating conditions of lithium-ion batteries for commonly used mobile phones are 0 °C to 45 °C.
The Li-ion conduction mechanism in this material was investigated. The conduction path of pyrochlore-type structure cover the F ions located in the tunnels created by MO6 octahedra. The conduction mechanism is the sequential movement of Li-ions while changing bonds with F ions. Li ions move to the nearest Li position always passing through metastable positions. Immobile La3+ bonded to F ion inhibits the Li-ion conduction by blocking the conduction path and vanishing the surrounding metastable positions.
Unlike existing lithium-ion secondary batteries, oxide-based all solid-state batteries have no risk of electrolyte leakage due to damage and no risk of toxic gas generation as with sulfide-based batteries. Therefore, this new innovation is anticipated to propel future research.
“The newly discovered material is safe and exhibits higher ionic conductivity than previously reported oxide-based solid electrolytes. The application of this material is promising for the development of revolutionary batteries that can operate in a wide range of temperatures, from low to high,” says Prof. Fujimoto. “We believe that the performance required for the application of solid electrolytes for electric vehicles is satisfied.”
Notably, the new material is highly stable and will not ignite if damaged. It is suitable for airplanes and other places where safety is critical. It is also suitable for high-capacity applications, such as electric vehicles, because it can be used under high temperatures and supports rapid recharging. Moreover, it is also a promising material for miniaturization of batteries, home appliances, and medical devices.
In summary, researchers have not only discovered a Li-ion conductor with high conductivity and air stability but also introduced a new type of superionic conductor with a pyrochlore-type oxyfluoride. Exploring the local structure around lithium, their dynamic changes during conduction, and their potential as solid electrolytes for all-solid-state batteries are important areas for future research.
More information: Akihisa Aimi et al, High Li-Ion Conductivity in Pyrochlore-Type Solid Electrolyte Li2–xLa(1+x)/3M2O6F (M = Nb, Ta), Chemistry of Materials (2024). DOI: 10.1021/acs.chemmater.3c03288
Journal information: Chemistry of Materials

marine battery 12v

Are you in the market for a marine battery but feeling overwhelmed by the plethora of options available? Fear not, for I’m here to shed light on the various marine battery technologies to help you make an informed decision. From traditional lead-acid batteries to advanced lithium-ion ones, let’s delve into the world of marine battery technologies.

Lead-Acid Batteries

Lead-acid batteries have long been the go-to choice for marine applications due to their reliability and affordability. They come in two main variants: flooded lead-acid batteries and sealed lead-acid batteries.

Pros

Cost-effective: Lead-acid batteries are relatively inexpensive compared to other options.
Wide availability: These batteries are readily available in various sizes and configurations.
Robust: They can withstand overcharging and deep discharges without significant damage.

Cons

Maintenance-intensive: Flooded lead-acid batteries require regular maintenance, including checking water levels and cleaning terminals.
Limited lifespan: These batteries typically have a shorter lifespan compared to newer technologies.
Susceptible to vibration damage: The plates inside lead-acid batteries can degrade over time due to vibration.

Lead-acid batteries are well-suited for starting applications and providing power to onboard electronics on smaller boats where cost-effectiveness is a priority.

lifepo4 12v lead acid aeplacement battery 15ah

AGM (Absorbent Glass Mat) Batteries

AGM batteries are a type of sealed lead-acid battery that utilizes absorbent glass mats to hold the electrolyte solution. This construction offers several advantages over traditional flooded lead-acid batteries.

Pros

Maintenance-free: AGM batteries are sealed and do not require regular maintenance.
Vibration-resistant: The internal construction of AGM batteries makes them more resistant to vibration damage.
Faster charging: AGM batteries can accept higher charging currents, allowing for faster charging times.

Cons

Higher cost: AGM batteries are typically more expensive than flooded lead-acid batteries.
Limited deep cycling capability: While AGM batteries can handle some deep discharges, repeated deep cycling can reduce their lifespan.
Sensitivity to overcharging: Overcharging AGM batteries can lead to premature failure.

AGM batteries are ideal for applications where maintenance-free operation and resistance to vibration are essential, such as powering onboard electronics and accessories on mid-sized boats.

Lithium-Ion Batteries

Lithium-ion batteries represent the latest advancements in marine battery technology, offering superior performance and longevity compared to traditional lead-acid batteries.

Pros

Lightweight: Lithium-ion batteries are significantly lighter than lead-acid batteries, making them ideal for weight-sensitive applications.
High energy density: They offer a higher energy density, providing more power in a smaller package.
Long lifespan: Lithium-ion batteries can last significantly longer than lead-acid batteries, with some models boasting lifespans of over 10 years.

Cons

Higher initial cost: Lithium-ion batteries come with a higher upfront cost compared to lead-acid batteries.
Safety concerns: While modern lithium-ion batteries incorporate safety features, improper handling or charging can pose a risk of fire or explosion.
Compatibility issues: Some older marine electrical systems may not be compatible with lithium-ion batteries without modifications.

Li-ion batteries are best suited for high-performance applications where weight savings, long lifespan, and fast charging capabilities are crucial, such as powering electric propulsion systems or high-demand onboard electronics on larger vessels.

14.8V-li-ion-battery
Choosing the right marine battery technology depends on various factors such as budget, performance requirements, and specific application needs. Whether you opt for the reliability of lead-acid batteries, the convenience of AGM batteries, or the performance of lithium-ion batteries, there’s a solution tailored to your boating needs.

For more information on marine battery technologies and expert advice on selecting the perfect battery for your boat, contact us.

portable device decorate img

A sodium battery developed by researchers at The University of Texas at Austin significantly reduces fire risks from the technology, while also relying on inexpensive, abundant materials to serve as its building blocks.

Though battery fires are rare, increased battery usage means these incidents are on the rise.

The secret ingredient to this sodium battery breakthrough, published recently in Nature Energy, is a solid diluent. The researchers used a salt-based solid diluent in the electrolyte, facilitating the charge-discharge cycle. A specific type of salt—sodium nitrate—allowed the researchers to deploy just a single, nonflammable solvent in the electrolyte, stabilizing the battery as a whole.

Over time, the multiple liquid solvents in an electrolyte—the component that transfers charge-carrying ions between the battery’s two electrodes—react with other components in ways that degrade batteries and lead to safety risks. Sodium, an alternative to lithium that is one of the key ingredients in this battery, is highly reactive, posing a significant challenge to the adoption of these types of batteries. These reactions can lead to the growth of needle-like filaments called dendrites that can cause the battery to electrically short and even catch fire or explode.

“Batteries catch fire because the liquid solvents in the electrolyte don’t get along with other parts of the battery,” said Arumugam Manthiram, a professor in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering and the lead researcher on the project. “We have reduced that risk from the equation to create a safer, more stable battery.”

In addition to the safety improvement, this new, sodium-based battery represents a less expensive alternative to the lithium-ion batteries that power smartphones, laptops, electric cars and more.

The battery also boasts strong performance. How long a battery lasts on a single charge tends to decline over time. The new sodium battery retained 80% of its capacity over 500 cycles, matching the standard of lithium-ion batteries in smartphones.

Future Batteries(Article illustrations)- Sodium Battery

“Here we show a sodium battery that is safe and inexpensive to produce, without losing out on performance,” Manthiram said. “It is critical to develop alternatives to lithium-ion batteries that are not just on par with them, but better.”

Though the researchers applied this technique to a sodium battery, they said it could also translate to lithium-ion-based cells, albeit with different materials.

Lithium mining is expensive and has been criticized for its environmental impacts, including heavy groundwater use, soil and water pollution and carbon emissions. By comparison, sodium is available in the ocean, is cheaper and is more environmentally friendly.

Lithium-ion batteries typically also use cobalt, which is expensive and mined mostly in Africa’s Democratic Republic of the Congo, where it has significant impacts on human health and the environment. In 2020, Manthiram demonstrated a novel, cobalt-free lithium-ion battery.

This battery is also free of cobalt, as well as lithium. The other components are made of 40% iron, 30% manganese and 30% nickel.

Other authors on the paper are Jiarui He, Amruth Bhargav, Laisuo Su, Julia Lamb and Woochul Shin—all from the Cockrell School’s Materials Science and Engineering program and Texas Materials Institute—and John Okasinski of Argonne National Laboratory.

More information: Jiarui He et al, Tuning the solvation structure with salts for stable sodium-metal batteries, Nature Energy (2024). DOI: 10.1038/s41560-024-01469-y

Provided by University of Texas at Austin