Alternate Battery Systems
Analyze the pros and cons of other battery systems and learn what the potentials are.
The media promotes wonderful new batteries that promise long runtimes, charge in minutes, are paper-thin and will one day power the electric car. While these experimental batteries produce a voltage, the downsides are seldom mentioned. The typical shortcomings are low load capacity and short cycle life. (See BU-104c: The Octagon Battery.)
As a lemon can be made into a battery, so also has seawater been tried as electrolyte, but the retrieved energy is only good to light an incandescent flashlight for a short time before corrosion buildup renders the battery unusable. Many chemical processes are being tried to generate electricity from diverse metals but only a few promise to surpass today’s lead, nickel and lithium systems.
There is much media hype, and this may be done in part to attract venture capitalists to fund research projects. Few products have incubation periods that are as long as a battery. Although glamorous and promising at first, especially if the battery promises to power the electric vehicle, investment firms are beginning to realize the high development costs, uncertainties and long gestation periods before a return can be realized. Meanwhile, universities continue publishing papers about battery breakthroughs to keep receiving government funding while private companies throw in a paper or two to appease investors and boost their own stock value.
Zinc-air (Primary & Secondary)
Zinc-air batteries generate electrical power by an oxidation process of zinc and oxygen from the air. The cell can produce 1.65V; however, cells with 1.4V and lower voltages achieve a longer lifetime. To activate the battery, the user removes a sealing tab that enables airflow. The battery reaches full operating voltage within 5 seconds. Airflow can control the rate of the reaction somewhat and once turned on, the battery cannot be reverted back to standby mode. Adding a tape to stop the airflow only slows the chemical activity and battery will soon dry out.
The Zinc-air battery shares similarities with the fuel cell (PEMFC) by using oxygen from the air to fuel the positive electrode. It is considered a primary battery and recharging versions for high-power applications have been tried. Recharging occurs by replacing the spent zinc electrodes, which can be in the form of a zinc electrolyte paste. Other zinc-air batteries use zinc pellets.
At 300–400Wh/kg, zinc-air has a high specific energy but the specific power is low. Manufacturing cost is low and in a sealed state, zinc-air has a 2 percent self-discharge per year. The battery is sensitive to hot and cold temperatures and high humidity. Pollution also affects performance; high carbon dioxide content reduces the performance by increasing the internal resistance. Typical applications are hearing aids while large systems operate remote railway signaling and safety lamps at construction sites.
Silver-zinc (Primary & Secondary)
The small silver-based batteries in button cells are typically called silver-oxide and are non-rechargeable; the higher capacity rechargeable versions are referred to as silver-zinc. Both have an open circuit voltage of 1.60 volts. Because of the high cost of silver, these batteries come in either very small sizes where the amount of silver does not contribute significantly to the overall product cost, or they are available in larger sizes for critical applications where the superior performance outweighs any cost considerations.
The primary cells are used for watches, hearing aids and memory backup; the larger rechargeable version is found in submarines, missiles and aerospace applications. Silver-zinc also powers TV cameras needing extra runtime. High cost and short service life locked the silver-zinc out of the commercial market, but it is on the verge of a rebirth with improvements.
The primary cause of failure in the original design was the decaying of the zinc electrode and separator. Cycling developed zinc dendrites that pierced through the separator, causing electrical shorts. In addition, the separator degraded by sitting in the potassium hydroxide electrolyte. This limited the calendar life to about 2 years.
Improvements in the zinc electrode and separator promise a longer service life and a 40 percent higher specific energy than Li-ion. Silver-zinc is safe, has no toxic metals and can be recycled, but the use of silver makes the battery expensive to manufacture.
Reusable Alkaline
The reusable alkaline served as an alternative to disposable batteries. Although fabrication costs were said to be similar to regular alkaline, the consumer did not accept the product.
Recharging alkaline batteries is not new. Ordinary alkaline batteries have been recharged in households for many years. Recharging is most effective if alkaline is discharged to less than 50 percent before recharging. The number of recharges depends on the depth of discharge and is limited to just a few cycles. Battery makers do not endorse this practice for safety reasons; charging ordinary alkaline batteries may generate hydrogen gas that can lead to an explosion.
The reusable alkaline overcomes some of these deficiencies, but a limited cycle count and low capacity on repeat charge are major drawbacks. Longevity is also in direct relationship to the depth of discharge. At a 50 percent depth of discharge, the battery may deliver 50 cycles, but most users run a battery empty before recharging and the manufacturer, including the inventor Karl Kordesch, overestimated the eagerness of the user wanting to recharge early. An additional limitation is its low load current of 400mA, which is only sufficient for flashlights and personal entertainment devices. NiMH in AA and AAA cells has mostly replaced the reusable alkaline.